ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.41
Committed: Tue Mar 30 16:13:00 2004 UTC (20 years, 1 month ago) by schorsch
Content type: text/plain
Branch: MAIN
Changes since 2.40: +26 -22 lines
Log Message:
Continued ANSIfication. There are only bits and pieces left now.

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: aniso.c,v 2.40 2003/08/28 03:22:16 greg Exp $";
3 #endif
4 /*
5 * Shading functions for anisotropic materials.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "otypes.h"
13 #include "rtotypes.h"
14 #include "source.h"
15 #include "func.h"
16 #include "random.h"
17
18 #ifndef MAXITER
19 #define MAXITER 10 /* maximum # specular ray attempts */
20 #endif
21
22 /*
23 * This routine implements the anisotropic Gaussian
24 * model described by Ward in Siggraph `92 article.
25 * We orient the surface towards the incoming ray, so a single
26 * surface can be used to represent an infinitely thin object.
27 *
28 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
29 * 4+ ux uy uz funcfile [transform...]
30 * 0
31 * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
32 *
33 * Real arguments for MAT_TRANS2 are:
34 * 8 red grn blu rspec u-rough v-rough trans tspec
35 */
36
37 /* specularity flags */
38 #define SP_REFL 01 /* has reflected specular component */
39 #define SP_TRAN 02 /* has transmitted specular */
40 #define SP_FLAT 04 /* reflecting surface is flat */
41 #define SP_RBLT 010 /* reflection below sample threshold */
42 #define SP_TBLT 020 /* transmission below threshold */
43 #define SP_BADU 040 /* bad u direction calculation */
44
45 typedef struct {
46 OBJREC *mp; /* material pointer */
47 RAY *rp; /* ray pointer */
48 short specfl; /* specularity flags, defined above */
49 COLOR mcolor; /* color of this material */
50 COLOR scolor; /* color of specular component */
51 FVECT vrefl; /* vector in reflected direction */
52 FVECT prdir; /* vector in transmitted direction */
53 FVECT u, v; /* u and v vectors orienting anisotropy */
54 double u_alpha; /* u roughness */
55 double v_alpha; /* v roughness */
56 double rdiff, rspec; /* reflected specular, diffuse */
57 double trans; /* transmissivity */
58 double tdiff, tspec; /* transmitted specular, diffuse */
59 FVECT pnorm; /* perturbed surface normal */
60 double pdot; /* perturbed dot product */
61 } ANISODAT; /* anisotropic material data */
62
63 static srcdirf_t diraniso;
64 static void getacoords(RAY *r, ANISODAT *np);
65 static void agaussamp(RAY *r, ANISODAT *np);
66
67
68 static void
69 diraniso( /* compute source contribution */
70 COLOR cval, /* returned coefficient */
71 void *nnp, /* material data */
72 FVECT ldir, /* light source direction */
73 double omega /* light source size */
74 )
75 {
76 register ANISODAT *np = nnp;
77 double ldot;
78 double dtmp, dtmp1, dtmp2;
79 FVECT h;
80 double au2, av2;
81 COLOR ctmp;
82
83 setcolor(cval, 0.0, 0.0, 0.0);
84
85 ldot = DOT(np->pnorm, ldir);
86
87 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
88 return; /* wrong side */
89
90 if (ldot > FTINY && np->rdiff > FTINY) {
91 /*
92 * Compute and add diffuse reflected component to returned
93 * color. The diffuse reflected component will always be
94 * modified by the color of the material.
95 */
96 copycolor(ctmp, np->mcolor);
97 dtmp = ldot * omega * np->rdiff / PI;
98 scalecolor(ctmp, dtmp);
99 addcolor(cval, ctmp);
100 }
101 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
102 /*
103 * Compute specular reflection coefficient using
104 * anisotropic gaussian distribution model.
105 */
106 /* add source width if flat */
107 if (np->specfl & SP_FLAT)
108 au2 = av2 = omega/(4.0*PI);
109 else
110 au2 = av2 = 0.0;
111 au2 += np->u_alpha*np->u_alpha;
112 av2 += np->v_alpha*np->v_alpha;
113 /* half vector */
114 h[0] = ldir[0] - np->rp->rdir[0];
115 h[1] = ldir[1] - np->rp->rdir[1];
116 h[2] = ldir[2] - np->rp->rdir[2];
117 /* ellipse */
118 dtmp1 = DOT(np->u, h);
119 dtmp1 *= dtmp1 / au2;
120 dtmp2 = DOT(np->v, h);
121 dtmp2 *= dtmp2 / av2;
122 /* gaussian */
123 dtmp = DOT(np->pnorm, h);
124 dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp);
125 dtmp = exp(-dtmp) * (0.25/PI)
126 * sqrt(ldot/(np->pdot*au2*av2));
127 /* worth using? */
128 if (dtmp > FTINY) {
129 copycolor(ctmp, np->scolor);
130 dtmp *= omega;
131 scalecolor(ctmp, dtmp);
132 addcolor(cval, ctmp);
133 }
134 }
135 if (ldot < -FTINY && np->tdiff > FTINY) {
136 /*
137 * Compute diffuse transmission.
138 */
139 copycolor(ctmp, np->mcolor);
140 dtmp = -ldot * omega * np->tdiff / PI;
141 scalecolor(ctmp, dtmp);
142 addcolor(cval, ctmp);
143 }
144 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
145 /*
146 * Compute specular transmission. Specular transmission
147 * is always modified by material color.
148 */
149 /* roughness + source */
150 au2 = av2 = omega / PI;
151 au2 += np->u_alpha*np->u_alpha;
152 av2 += np->v_alpha*np->v_alpha;
153 /* "half vector" */
154 h[0] = ldir[0] - np->prdir[0];
155 h[1] = ldir[1] - np->prdir[1];
156 h[2] = ldir[2] - np->prdir[2];
157 dtmp = DOT(h,h);
158 if (dtmp > FTINY*FTINY) {
159 dtmp1 = DOT(h,np->pnorm);
160 dtmp = 1.0 - dtmp1*dtmp1/dtmp;
161 if (dtmp > FTINY*FTINY) {
162 dtmp1 = DOT(h,np->u);
163 dtmp1 *= dtmp1 / au2;
164 dtmp2 = DOT(h,np->v);
165 dtmp2 *= dtmp2 / av2;
166 dtmp = (dtmp1 + dtmp2) / dtmp;
167 }
168 } else
169 dtmp = 0.0;
170 /* gaussian */
171 dtmp = exp(-dtmp) * (1.0/PI)
172 * sqrt(-ldot/(np->pdot*au2*av2));
173 /* worth using? */
174 if (dtmp > FTINY) {
175 copycolor(ctmp, np->mcolor);
176 dtmp *= np->tspec * omega;
177 scalecolor(ctmp, dtmp);
178 addcolor(cval, ctmp);
179 }
180 }
181 }
182
183
184 extern int
185 m_aniso( /* shade ray that hit something anisotropic */
186 register OBJREC *m,
187 register RAY *r
188 )
189 {
190 ANISODAT nd;
191 COLOR ctmp;
192 register int i;
193 /* easy shadow test */
194 if (r->crtype & SHADOW)
195 return(1);
196
197 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
198 objerror(m, USER, "bad number of real arguments");
199 /* check for back side */
200 if (r->rod < 0.0) {
201 if (!backvis && m->otype != MAT_TRANS2) {
202 raytrans(r);
203 return(1);
204 }
205 raytexture(r, m->omod);
206 flipsurface(r); /* reorient if backvis */
207 } else
208 raytexture(r, m->omod);
209 /* get material color */
210 nd.mp = m;
211 nd.rp = r;
212 setcolor(nd.mcolor, m->oargs.farg[0],
213 m->oargs.farg[1],
214 m->oargs.farg[2]);
215 /* get roughness */
216 nd.specfl = 0;
217 nd.u_alpha = m->oargs.farg[4];
218 nd.v_alpha = m->oargs.farg[5];
219 if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
220 objerror(m, USER, "roughness too small");
221
222 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
223 if (nd.pdot < .001)
224 nd.pdot = .001; /* non-zero for diraniso() */
225 multcolor(nd.mcolor, r->pcol); /* modify material color */
226 /* get specular component */
227 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
228 nd.specfl |= SP_REFL;
229 /* compute specular color */
230 if (m->otype == MAT_METAL2)
231 copycolor(nd.scolor, nd.mcolor);
232 else
233 setcolor(nd.scolor, 1.0, 1.0, 1.0);
234 scalecolor(nd.scolor, nd.rspec);
235 /* check threshold */
236 if (specthresh >= nd.rspec-FTINY)
237 nd.specfl |= SP_RBLT;
238 /* compute refl. direction */
239 for (i = 0; i < 3; i++)
240 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
241 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
242 for (i = 0; i < 3; i++) /* safety measure */
243 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
244 }
245 /* compute transmission */
246 if (m->otype == MAT_TRANS2) {
247 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
248 nd.tspec = nd.trans * m->oargs.farg[7];
249 nd.tdiff = nd.trans - nd.tspec;
250 if (nd.tspec > FTINY) {
251 nd.specfl |= SP_TRAN;
252 /* check threshold */
253 if (specthresh >= nd.tspec-FTINY)
254 nd.specfl |= SP_TBLT;
255 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
256 VCOPY(nd.prdir, r->rdir);
257 } else {
258 for (i = 0; i < 3; i++) /* perturb */
259 nd.prdir[i] = r->rdir[i] - r->pert[i];
260 if (DOT(nd.prdir, r->ron) < -FTINY)
261 normalize(nd.prdir); /* OK */
262 else
263 VCOPY(nd.prdir, r->rdir);
264 }
265 }
266 } else
267 nd.tdiff = nd.tspec = nd.trans = 0.0;
268
269 /* diffuse reflection */
270 nd.rdiff = 1.0 - nd.trans - nd.rspec;
271
272 if (r->ro != NULL && isflat(r->ro->otype))
273 nd.specfl |= SP_FLAT;
274
275 getacoords(r, &nd); /* set up coordinates */
276
277 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
278 agaussamp(r, &nd);
279
280 if (nd.rdiff > FTINY) { /* ambient from this side */
281 ambient(ctmp, r, nd.pnorm);
282 if (nd.specfl & SP_RBLT)
283 scalecolor(ctmp, 1.0-nd.trans);
284 else
285 scalecolor(ctmp, nd.rdiff);
286 multcolor(ctmp, nd.mcolor); /* modified by material color */
287 addcolor(r->rcol, ctmp); /* add to returned color */
288 }
289 if (nd.tdiff > FTINY) { /* ambient from other side */
290 FVECT bnorm;
291
292 flipsurface(r);
293 bnorm[0] = -nd.pnorm[0];
294 bnorm[1] = -nd.pnorm[1];
295 bnorm[2] = -nd.pnorm[2];
296 ambient(ctmp, r, bnorm);
297 if (nd.specfl & SP_TBLT)
298 scalecolor(ctmp, nd.trans);
299 else
300 scalecolor(ctmp, nd.tdiff);
301 multcolor(ctmp, nd.mcolor); /* modified by color */
302 addcolor(r->rcol, ctmp);
303 flipsurface(r);
304 }
305 /* add direct component */
306 direct(r, diraniso, &nd);
307
308 return(1);
309 }
310
311
312 static void
313 getacoords( /* set up coordinate system */
314 RAY *r,
315 register ANISODAT *np
316 )
317 {
318 register MFUNC *mf;
319 register int i;
320
321 mf = getfunc(np->mp, 3, 0x7, 1);
322 setfunc(np->mp, r);
323 errno = 0;
324 for (i = 0; i < 3; i++)
325 np->u[i] = evalue(mf->ep[i]);
326 if (errno == EDOM || errno == ERANGE) {
327 objerror(np->mp, WARNING, "compute error");
328 np->specfl |= SP_BADU;
329 return;
330 }
331 if (mf->f != &unitxf)
332 multv3(np->u, np->u, mf->f->xfm);
333 fcross(np->v, np->pnorm, np->u);
334 if (normalize(np->v) == 0.0) {
335 objerror(np->mp, WARNING, "illegal orientation vector");
336 np->specfl |= SP_BADU;
337 return;
338 }
339 fcross(np->u, np->v, np->pnorm);
340 }
341
342
343 static void
344 agaussamp( /* sample anisotropic gaussian specular */
345 RAY *r,
346 register ANISODAT *np
347 )
348 {
349 RAY sr;
350 FVECT h;
351 double rv[2];
352 double d, sinp, cosp;
353 int niter;
354 register int i;
355 /* compute reflection */
356 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
357 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
358 dimlist[ndims++] = (int)np->mp;
359 for (niter = 0; niter < MAXITER; niter++) {
360 if (niter)
361 d = frandom();
362 else
363 d = urand(ilhash(dimlist,ndims)+samplendx);
364 multisamp(rv, 2, d);
365 d = 2.0*PI * rv[0];
366 cosp = tcos(d) * np->u_alpha;
367 sinp = tsin(d) * np->v_alpha;
368 d = sqrt(cosp*cosp + sinp*sinp);
369 cosp /= d;
370 sinp /= d;
371 rv[1] = 1.0 - specjitter*rv[1];
372 if (rv[1] <= FTINY)
373 d = 1.0;
374 else
375 d = sqrt(-log(rv[1]) /
376 (cosp*cosp/(np->u_alpha*np->u_alpha) +
377 sinp*sinp/(np->v_alpha*np->v_alpha)));
378 for (i = 0; i < 3; i++)
379 h[i] = np->pnorm[i] +
380 d*(cosp*np->u[i] + sinp*np->v[i]);
381 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
382 for (i = 0; i < 3; i++)
383 sr.rdir[i] = r->rdir[i] + d*h[i];
384 if (DOT(sr.rdir, r->ron) > FTINY) {
385 rayvalue(&sr);
386 multcolor(sr.rcol, np->scolor);
387 addcolor(r->rcol, sr.rcol);
388 break;
389 }
390 }
391 ndims--;
392 }
393 /* compute transmission */
394 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
395 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
396 dimlist[ndims++] = (int)np->mp;
397 for (niter = 0; niter < MAXITER; niter++) {
398 if (niter)
399 d = frandom();
400 else
401 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
402 multisamp(rv, 2, d);
403 d = 2.0*PI * rv[0];
404 cosp = tcos(d) * np->u_alpha;
405 sinp = tsin(d) * np->v_alpha;
406 d = sqrt(cosp*cosp + sinp*sinp);
407 cosp /= d;
408 sinp /= d;
409 rv[1] = 1.0 - specjitter*rv[1];
410 if (rv[1] <= FTINY)
411 d = 1.0;
412 else
413 d = sqrt(-log(rv[1]) /
414 (cosp*cosp/(np->u_alpha*np->u_alpha) +
415 sinp*sinp/(np->v_alpha*np->v_alpha)));
416 for (i = 0; i < 3; i++)
417 sr.rdir[i] = np->prdir[i] +
418 d*(cosp*np->u[i] + sinp*np->v[i]);
419 if (DOT(sr.rdir, r->ron) < -FTINY) {
420 normalize(sr.rdir); /* OK, normalize */
421 rayvalue(&sr);
422 scalecolor(sr.rcol, np->tspec);
423 multcolor(sr.rcol, np->mcolor); /* modify */
424 addcolor(r->rcol, sr.rcol);
425 break;
426 }
427 }
428 ndims--;
429 }
430 }