ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.39
Committed: Wed Mar 12 17:26:58 2003 UTC (21 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R5
Changes since 2.38: +1 -2 lines
Log Message:
Returned old behavior with flat surfaces and improved documentation

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id$";
3 #endif
4 /*
5 * Shading functions for anisotropic materials.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11
12 #include "otypes.h"
13
14 #include "func.h"
15
16 #include "random.h"
17
18 #ifndef MAXITER
19 #define MAXITER 10 /* maximum # specular ray attempts */
20 #endif
21
22 /*
23 * This routine implements the anisotropic Gaussian
24 * model described by Ward in Siggraph `92 article.
25 * We orient the surface towards the incoming ray, so a single
26 * surface can be used to represent an infinitely thin object.
27 *
28 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
29 * 4+ ux uy uz funcfile [transform...]
30 * 0
31 * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
32 *
33 * Real arguments for MAT_TRANS2 are:
34 * 8 red grn blu rspec u-rough v-rough trans tspec
35 */
36
37 /* specularity flags */
38 #define SP_REFL 01 /* has reflected specular component */
39 #define SP_TRAN 02 /* has transmitted specular */
40 #define SP_FLAT 04 /* reflecting surface is flat */
41 #define SP_RBLT 010 /* reflection below sample threshold */
42 #define SP_TBLT 020 /* transmission below threshold */
43 #define SP_BADU 040 /* bad u direction calculation */
44
45 typedef struct {
46 OBJREC *mp; /* material pointer */
47 RAY *rp; /* ray pointer */
48 short specfl; /* specularity flags, defined above */
49 COLOR mcolor; /* color of this material */
50 COLOR scolor; /* color of specular component */
51 FVECT vrefl; /* vector in reflected direction */
52 FVECT prdir; /* vector in transmitted direction */
53 FVECT u, v; /* u and v vectors orienting anisotropy */
54 double u_alpha; /* u roughness */
55 double v_alpha; /* v roughness */
56 double rdiff, rspec; /* reflected specular, diffuse */
57 double trans; /* transmissivity */
58 double tdiff, tspec; /* transmitted specular, diffuse */
59 FVECT pnorm; /* perturbed surface normal */
60 double pdot; /* perturbed dot product */
61 } ANISODAT; /* anisotropic material data */
62
63 static void getacoords();
64 static void agaussamp();
65
66
67 static void
68 diraniso(cval, np, ldir, omega) /* compute source contribution */
69 COLOR cval; /* returned coefficient */
70 register ANISODAT *np; /* material data */
71 FVECT ldir; /* light source direction */
72 double omega; /* light source size */
73 {
74 double ldot;
75 double dtmp, dtmp1, dtmp2;
76 FVECT h;
77 double au2, av2;
78 COLOR ctmp;
79
80 setcolor(cval, 0.0, 0.0, 0.0);
81
82 ldot = DOT(np->pnorm, ldir);
83
84 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
85 return; /* wrong side */
86
87 if (ldot > FTINY && np->rdiff > FTINY) {
88 /*
89 * Compute and add diffuse reflected component to returned
90 * color. The diffuse reflected component will always be
91 * modified by the color of the material.
92 */
93 copycolor(ctmp, np->mcolor);
94 dtmp = ldot * omega * np->rdiff / PI;
95 scalecolor(ctmp, dtmp);
96 addcolor(cval, ctmp);
97 }
98 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
99 /*
100 * Compute specular reflection coefficient using
101 * anisotropic gaussian distribution model.
102 */
103 /* add source width if flat */
104 if (np->specfl & SP_FLAT)
105 au2 = av2 = omega/(4.0*PI);
106 else
107 au2 = av2 = 0.0;
108 au2 += np->u_alpha*np->u_alpha;
109 av2 += np->v_alpha*np->v_alpha;
110 /* half vector */
111 h[0] = ldir[0] - np->rp->rdir[0];
112 h[1] = ldir[1] - np->rp->rdir[1];
113 h[2] = ldir[2] - np->rp->rdir[2];
114 /* ellipse */
115 dtmp1 = DOT(np->u, h);
116 dtmp1 *= dtmp1 / au2;
117 dtmp2 = DOT(np->v, h);
118 dtmp2 *= dtmp2 / av2;
119 /* gaussian */
120 dtmp = DOT(np->pnorm, h);
121 dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp);
122 dtmp = exp(-dtmp) * (0.25/PI)
123 * sqrt(ldot/(np->pdot*au2*av2));
124 /* worth using? */
125 if (dtmp > FTINY) {
126 copycolor(ctmp, np->scolor);
127 dtmp *= omega;
128 scalecolor(ctmp, dtmp);
129 addcolor(cval, ctmp);
130 }
131 }
132 if (ldot < -FTINY && np->tdiff > FTINY) {
133 /*
134 * Compute diffuse transmission.
135 */
136 copycolor(ctmp, np->mcolor);
137 dtmp = -ldot * omega * np->tdiff / PI;
138 scalecolor(ctmp, dtmp);
139 addcolor(cval, ctmp);
140 }
141 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
142 /*
143 * Compute specular transmission. Specular transmission
144 * is always modified by material color.
145 */
146 /* roughness + source */
147 au2 = av2 = omega / PI;
148 au2 += np->u_alpha*np->u_alpha;
149 av2 += np->v_alpha*np->v_alpha;
150 /* "half vector" */
151 h[0] = ldir[0] - np->prdir[0];
152 h[1] = ldir[1] - np->prdir[1];
153 h[2] = ldir[2] - np->prdir[2];
154 dtmp = DOT(h,h);
155 if (dtmp > FTINY*FTINY) {
156 dtmp1 = DOT(h,np->pnorm);
157 dtmp = 1.0 - dtmp1*dtmp1/dtmp;
158 if (dtmp > FTINY*FTINY) {
159 dtmp1 = DOT(h,np->u);
160 dtmp1 *= dtmp1 / au2;
161 dtmp2 = DOT(h,np->v);
162 dtmp2 *= dtmp2 / av2;
163 dtmp = (dtmp1 + dtmp2) / dtmp;
164 }
165 } else
166 dtmp = 0.0;
167 /* gaussian */
168 dtmp = exp(-dtmp) * (1.0/PI)
169 * sqrt(-ldot/(np->pdot*au2*av2));
170 /* worth using? */
171 if (dtmp > FTINY) {
172 copycolor(ctmp, np->mcolor);
173 dtmp *= np->tspec * omega;
174 scalecolor(ctmp, dtmp);
175 addcolor(cval, ctmp);
176 }
177 }
178 }
179
180
181 int
182 m_aniso(m, r) /* shade ray that hit something anisotropic */
183 register OBJREC *m;
184 register RAY *r;
185 {
186 ANISODAT nd;
187 COLOR ctmp;
188 register int i;
189 /* easy shadow test */
190 if (r->crtype & SHADOW)
191 return(1);
192
193 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
194 objerror(m, USER, "bad number of real arguments");
195 /* check for back side */
196 if (r->rod < 0.0) {
197 if (!backvis && m->otype != MAT_TRANS2) {
198 raytrans(r);
199 return(1);
200 }
201 raytexture(r, m->omod);
202 flipsurface(r); /* reorient if backvis */
203 } else
204 raytexture(r, m->omod);
205 /* get material color */
206 nd.mp = m;
207 nd.rp = r;
208 setcolor(nd.mcolor, m->oargs.farg[0],
209 m->oargs.farg[1],
210 m->oargs.farg[2]);
211 /* get roughness */
212 nd.specfl = 0;
213 nd.u_alpha = m->oargs.farg[4];
214 nd.v_alpha = m->oargs.farg[5];
215 if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
216 objerror(m, USER, "roughness too small");
217
218 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
219 if (nd.pdot < .001)
220 nd.pdot = .001; /* non-zero for diraniso() */
221 multcolor(nd.mcolor, r->pcol); /* modify material color */
222 /* get specular component */
223 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
224 nd.specfl |= SP_REFL;
225 /* compute specular color */
226 if (m->otype == MAT_METAL2)
227 copycolor(nd.scolor, nd.mcolor);
228 else
229 setcolor(nd.scolor, 1.0, 1.0, 1.0);
230 scalecolor(nd.scolor, nd.rspec);
231 /* check threshold */
232 if (specthresh >= nd.rspec-FTINY)
233 nd.specfl |= SP_RBLT;
234 /* compute refl. direction */
235 for (i = 0; i < 3; i++)
236 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
237 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
238 for (i = 0; i < 3; i++) /* safety measure */
239 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
240 }
241 /* compute transmission */
242 if (m->otype == MAT_TRANS2) {
243 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
244 nd.tspec = nd.trans * m->oargs.farg[7];
245 nd.tdiff = nd.trans - nd.tspec;
246 if (nd.tspec > FTINY) {
247 nd.specfl |= SP_TRAN;
248 /* check threshold */
249 if (specthresh >= nd.tspec-FTINY)
250 nd.specfl |= SP_TBLT;
251 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
252 VCOPY(nd.prdir, r->rdir);
253 } else {
254 for (i = 0; i < 3; i++) /* perturb */
255 nd.prdir[i] = r->rdir[i] - r->pert[i];
256 if (DOT(nd.prdir, r->ron) < -FTINY)
257 normalize(nd.prdir); /* OK */
258 else
259 VCOPY(nd.prdir, r->rdir);
260 }
261 }
262 } else
263 nd.tdiff = nd.tspec = nd.trans = 0.0;
264
265 /* diffuse reflection */
266 nd.rdiff = 1.0 - nd.trans - nd.rspec;
267
268 if (r->ro != NULL && isflat(r->ro->otype))
269 nd.specfl |= SP_FLAT;
270
271 getacoords(r, &nd); /* set up coordinates */
272
273 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
274 agaussamp(r, &nd);
275
276 if (nd.rdiff > FTINY) { /* ambient from this side */
277 ambient(ctmp, r, nd.pnorm);
278 if (nd.specfl & SP_RBLT)
279 scalecolor(ctmp, 1.0-nd.trans);
280 else
281 scalecolor(ctmp, nd.rdiff);
282 multcolor(ctmp, nd.mcolor); /* modified by material color */
283 addcolor(r->rcol, ctmp); /* add to returned color */
284 }
285 if (nd.tdiff > FTINY) { /* ambient from other side */
286 FVECT bnorm;
287
288 flipsurface(r);
289 bnorm[0] = -nd.pnorm[0];
290 bnorm[1] = -nd.pnorm[1];
291 bnorm[2] = -nd.pnorm[2];
292 ambient(ctmp, r, bnorm);
293 if (nd.specfl & SP_TBLT)
294 scalecolor(ctmp, nd.trans);
295 else
296 scalecolor(ctmp, nd.tdiff);
297 multcolor(ctmp, nd.mcolor); /* modified by color */
298 addcolor(r->rcol, ctmp);
299 flipsurface(r);
300 }
301 /* add direct component */
302 direct(r, diraniso, &nd);
303
304 return(1);
305 }
306
307
308 static void
309 getacoords(r, np) /* set up coordinate system */
310 RAY *r;
311 register ANISODAT *np;
312 {
313 register MFUNC *mf;
314 register int i;
315
316 mf = getfunc(np->mp, 3, 0x7, 1);
317 setfunc(np->mp, r);
318 errno = 0;
319 for (i = 0; i < 3; i++)
320 np->u[i] = evalue(mf->ep[i]);
321 if (errno == EDOM || errno == ERANGE) {
322 objerror(np->mp, WARNING, "compute error");
323 np->specfl |= SP_BADU;
324 return;
325 }
326 if (mf->f != &unitxf)
327 multv3(np->u, np->u, mf->f->xfm);
328 fcross(np->v, np->pnorm, np->u);
329 if (normalize(np->v) == 0.0) {
330 objerror(np->mp, WARNING, "illegal orientation vector");
331 np->specfl |= SP_BADU;
332 return;
333 }
334 fcross(np->u, np->v, np->pnorm);
335 }
336
337
338 static void
339 agaussamp(r, np) /* sample anisotropic gaussian specular */
340 RAY *r;
341 register ANISODAT *np;
342 {
343 RAY sr;
344 FVECT h;
345 double rv[2];
346 double d, sinp, cosp;
347 int niter;
348 register int i;
349 /* compute reflection */
350 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
351 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
352 dimlist[ndims++] = (int)np->mp;
353 for (niter = 0; niter < MAXITER; niter++) {
354 if (niter)
355 d = frandom();
356 else
357 d = urand(ilhash(dimlist,ndims)+samplendx);
358 multisamp(rv, 2, d);
359 d = 2.0*PI * rv[0];
360 cosp = tcos(d) * np->u_alpha;
361 sinp = tsin(d) * np->v_alpha;
362 d = sqrt(cosp*cosp + sinp*sinp);
363 cosp /= d;
364 sinp /= d;
365 rv[1] = 1.0 - specjitter*rv[1];
366 if (rv[1] <= FTINY)
367 d = 1.0;
368 else
369 d = sqrt(-log(rv[1]) /
370 (cosp*cosp/(np->u_alpha*np->u_alpha) +
371 sinp*sinp/(np->v_alpha*np->v_alpha)));
372 for (i = 0; i < 3; i++)
373 h[i] = np->pnorm[i] +
374 d*(cosp*np->u[i] + sinp*np->v[i]);
375 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
376 for (i = 0; i < 3; i++)
377 sr.rdir[i] = r->rdir[i] + d*h[i];
378 if (DOT(sr.rdir, r->ron) > FTINY) {
379 rayvalue(&sr);
380 multcolor(sr.rcol, np->scolor);
381 addcolor(r->rcol, sr.rcol);
382 break;
383 }
384 }
385 ndims--;
386 }
387 /* compute transmission */
388 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
389 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
390 dimlist[ndims++] = (int)np->mp;
391 for (niter = 0; niter < MAXITER; niter++) {
392 if (niter)
393 d = frandom();
394 else
395 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
396 multisamp(rv, 2, d);
397 d = 2.0*PI * rv[0];
398 cosp = tcos(d) * np->u_alpha;
399 sinp = tsin(d) * np->v_alpha;
400 d = sqrt(cosp*cosp + sinp*sinp);
401 cosp /= d;
402 sinp /= d;
403 rv[1] = 1.0 - specjitter*rv[1];
404 if (rv[1] <= FTINY)
405 d = 1.0;
406 else
407 d = sqrt(-log(rv[1]) /
408 (cosp*cosp/(np->u_alpha*np->u_alpha) +
409 sinp*sinp/(np->v_alpha*np->v_alpha)));
410 for (i = 0; i < 3; i++)
411 sr.rdir[i] = np->prdir[i] +
412 d*(cosp*np->u[i] + sinp*np->v[i]);
413 if (DOT(sr.rdir, r->ron) < -FTINY) {
414 normalize(sr.rdir); /* OK, normalize */
415 rayvalue(&sr);
416 scalecolor(sr.rcol, np->tspec);
417 multcolor(sr.rcol, np->mcolor); /* modify */
418 addcolor(r->rcol, sr.rcol);
419 break;
420 }
421 }
422 ndims--;
423 }
424 }