#ifndef lint static const char RCSid[] = "$Id: aniso.c,v 2.35 2003/02/25 02:47:22 greg Exp $"; #endif /* * Shading functions for anisotropic materials. */ #include "copyright.h" #include "ray.h" #include "otypes.h" #include "func.h" #include "random.h" #ifndef MAXITER #define MAXITER 10 /* maximum # specular ray attempts */ #endif /* * This routine implements the anisotropic Gaussian * model described by Ward in Siggraph `92 article. * We orient the surface towards the incoming ray, so a single * surface can be used to represent an infinitely thin object. * * Arguments for MAT_PLASTIC2 and MAT_METAL2 are: * 4+ ux uy uz funcfile [transform...] * 0 * 6 red grn blu specular-frac. u-facet-slope v-facet-slope * * Real arguments for MAT_TRANS2 are: * 8 red grn blu rspec u-rough v-rough trans tspec */ /* specularity flags */ #define SP_REFL 01 /* has reflected specular component */ #define SP_TRAN 02 /* has transmitted specular */ #define SP_FLAT 04 /* reflecting surface is flat */ #define SP_RBLT 010 /* reflection below sample threshold */ #define SP_TBLT 020 /* transmission below threshold */ #define SP_BADU 040 /* bad u direction calculation */ typedef struct { OBJREC *mp; /* material pointer */ RAY *rp; /* ray pointer */ short specfl; /* specularity flags, defined above */ COLOR mcolor; /* color of this material */ COLOR scolor; /* color of specular component */ FVECT vrefl; /* vector in reflected direction */ FVECT prdir; /* vector in transmitted direction */ FVECT u, v; /* u and v vectors orienting anisotropy */ double u_alpha; /* u roughness */ double v_alpha; /* v roughness */ double rdiff, rspec; /* reflected specular, diffuse */ double trans; /* transmissivity */ double tdiff, tspec; /* transmitted specular, diffuse */ FVECT pnorm; /* perturbed surface normal */ double pdot; /* perturbed dot product */ } ANISODAT; /* anisotropic material data */ static void getacoords(); static void agaussamp(); static void diraniso(cval, np, ldir, omega) /* compute source contribution */ COLOR cval; /* returned coefficient */ register ANISODAT *np; /* material data */ FVECT ldir; /* light source direction */ double omega; /* light source size */ { double ldot; double dtmp, dtmp1, dtmp2; FVECT h; double au2, av2; COLOR ctmp; setcolor(cval, 0.0, 0.0, 0.0); ldot = DOT(np->pnorm, ldir); if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) return; /* wrong side */ if (ldot > FTINY && np->rdiff > FTINY) { /* * Compute and add diffuse reflected component to returned * color. The diffuse reflected component will always be * modified by the color of the material. */ copycolor(ctmp, np->mcolor); dtmp = ldot * omega * np->rdiff / PI; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) { /* * Compute specular reflection coefficient using * anisotropic gaussian distribution model. */ /* add source width if flat */ if (np->specfl & SP_FLAT) au2 = av2 = omega/(4.0*PI); else au2 = av2 = 0.0; au2 += np->u_alpha*np->u_alpha; av2 += np->v_alpha*np->v_alpha; /* half vector */ h[0] = ldir[0] - np->rp->rdir[0]; h[1] = ldir[1] - np->rp->rdir[1]; h[2] = ldir[2] - np->rp->rdir[2]; /* ellipse */ dtmp1 = DOT(np->u, h); dtmp1 *= dtmp1 / au2; dtmp2 = DOT(np->v, h); dtmp2 *= dtmp2 / av2; /* gaussian */ dtmp = DOT(np->pnorm, h); dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp); dtmp = exp(-dtmp) * (0.25/PI) * sqrt(ldot/(np->pdot*au2*av2)); /* worth using? */ if (dtmp > FTINY) { copycolor(ctmp, np->scolor); dtmp *= omega; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } } if (ldot < -FTINY && np->tdiff > FTINY) { /* * Compute diffuse transmission. */ copycolor(ctmp, np->mcolor); dtmp = -ldot * omega * np->tdiff / PI; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) { /* * Compute specular transmission. Specular transmission * is always modified by material color. */ /* roughness + source */ au2 = av2 = omega / PI; au2 += np->u_alpha*np->u_alpha; av2 += np->v_alpha*np->v_alpha; /* "half vector" */ h[0] = ldir[0] - np->prdir[0]; h[1] = ldir[1] - np->prdir[1]; h[2] = ldir[2] - np->prdir[2]; dtmp = DOT(h,h); if (dtmp > FTINY*FTINY) { dtmp1 = DOT(h,np->pnorm); dtmp = 1.0 - dtmp1*dtmp1/dtmp; if (dtmp > FTINY*FTINY) { dtmp1 = DOT(h,np->u); dtmp1 *= dtmp1 / au2; dtmp2 = DOT(h,np->v); dtmp2 *= dtmp2 / av2; dtmp = (dtmp1 + dtmp2) / dtmp; } } else dtmp = 0.0; /* gaussian */ dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2)); /* worth using? */ if (dtmp > FTINY) { copycolor(ctmp, np->mcolor); dtmp *= np->tspec * omega; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } } } int m_aniso(m, r) /* shade ray that hit something anisotropic */ register OBJREC *m; register RAY *r; { ANISODAT nd; COLOR ctmp; register int i; /* easy shadow test */ if (r->crtype & SHADOW) return(1); if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6)) objerror(m, USER, "bad number of real arguments"); nd.mp = m; nd.rp = r; /* get material color */ setcolor(nd.mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]); /* get roughness */ nd.specfl = 0; nd.u_alpha = m->oargs.farg[4]; nd.v_alpha = m->oargs.farg[5]; if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY) objerror(m, USER, "roughness too small"); /* check for back side */ if (r->rod < 0.0) { if (!backvis && m->otype != MAT_TRANS2) { raytrans(r); return(1); } flipsurface(r); /* reorient if backvis */ } /* get modifiers */ raytexture(r, m->omod); nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ if (nd.pdot < .001) nd.pdot = .001; /* non-zero for diraniso() */ multcolor(nd.mcolor, r->pcol); /* modify material color */ /* get specular component */ if ((nd.rspec = m->oargs.farg[3]) > FTINY) { nd.specfl |= SP_REFL; /* compute specular color */ if (m->otype == MAT_METAL2) copycolor(nd.scolor, nd.mcolor); else setcolor(nd.scolor, 1.0, 1.0, 1.0); scalecolor(nd.scolor, nd.rspec); /* check threshold */ if (specthresh >= nd.rspec-FTINY) nd.specfl |= SP_RBLT; /* compute refl. direction */ for (i = 0; i < 3; i++) nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i]; if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */ for (i = 0; i < 3; i++) /* safety measure */ nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; } /* compute transmission */ if (m->otype == MAT_TRANS2) { nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec); nd.tspec = nd.trans * m->oargs.farg[7]; nd.tdiff = nd.trans - nd.tspec; if (nd.tspec > FTINY) { nd.specfl |= SP_TRAN; /* check threshold */ if (specthresh >= nd.tspec-FTINY) nd.specfl |= SP_TBLT; if (DOT(r->pert,r->pert) <= FTINY*FTINY) { VCOPY(nd.prdir, r->rdir); } else { for (i = 0; i < 3; i++) /* perturb */ nd.prdir[i] = r->rdir[i] - r->pert[i]; if (DOT(nd.prdir, r->ron) < -FTINY) normalize(nd.prdir); /* OK */ else VCOPY(nd.prdir, r->rdir); } } } else nd.tdiff = nd.tspec = nd.trans = 0.0; /* diffuse reflection */ nd.rdiff = 1.0 - nd.trans - nd.rspec; if (r->ro != NULL && isflat(r->ro->otype)) nd.specfl |= SP_FLAT; getacoords(r, &nd); /* set up coordinates */ if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU)) agaussamp(r, &nd); if (nd.rdiff > FTINY) { /* ambient from this side */ ambient(ctmp, r, nd.pnorm); if (nd.specfl & SP_RBLT) scalecolor(ctmp, 1.0-nd.trans); else scalecolor(ctmp, nd.rdiff); multcolor(ctmp, nd.mcolor); /* modified by material color */ addcolor(r->rcol, ctmp); /* add to returned color */ } if (nd.tdiff > FTINY) { /* ambient from other side */ FVECT bnorm; flipsurface(r); bnorm[0] = -nd.pnorm[0]; bnorm[1] = -nd.pnorm[1]; bnorm[2] = -nd.pnorm[2]; ambient(ctmp, r, bnorm); if (nd.specfl & SP_TBLT) scalecolor(ctmp, nd.trans); else scalecolor(ctmp, nd.tdiff); multcolor(ctmp, nd.mcolor); /* modified by color */ addcolor(r->rcol, ctmp); flipsurface(r); } /* add direct component */ direct(r, diraniso, &nd); return(1); } static void getacoords(r, np) /* set up coordinate system */ RAY *r; register ANISODAT *np; { register MFUNC *mf; register int i; mf = getfunc(np->mp, 3, 0x7, 1); setfunc(np->mp, r); errno = 0; for (i = 0; i < 3; i++) np->u[i] = evalue(mf->ep[i]); if (errno) { objerror(np->mp, WARNING, "compute error"); np->specfl |= SP_BADU; return; } if (mf->f != &unitxf) multv3(np->u, np->u, mf->f->xfm); fcross(np->v, np->pnorm, np->u); if (normalize(np->v) == 0.0) { objerror(np->mp, WARNING, "illegal orientation vector"); np->specfl |= SP_BADU; return; } fcross(np->u, np->v, np->pnorm); } static void agaussamp(r, np) /* sample anisotropic gaussian specular */ RAY *r; register ANISODAT *np; { RAY sr; FVECT h; double rv[2]; double d, sinp, cosp; int niter; register int i; /* compute reflection */ if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { dimlist[ndims++] = (int)np->mp; for (niter = 0; niter < MAXITER; niter++) { if (niter) d = frandom(); else d = urand(ilhash(dimlist,ndims)+samplendx); multisamp(rv, 2, d); d = 2.0*PI * rv[0]; cosp = tcos(d) * np->u_alpha; sinp = tsin(d) * np->v_alpha; d = sqrt(cosp*cosp + sinp*sinp); cosp /= d; sinp /= d; rv[1] = 1.0 - specjitter*rv[1]; if (rv[1] <= FTINY) d = 1.0; else d = sqrt(-log(rv[1]) / (cosp*cosp/(np->u_alpha*np->u_alpha) + sinp*sinp/(np->v_alpha*np->v_alpha))); for (i = 0; i < 3; i++) h[i] = np->pnorm[i] + d*(cosp*np->u[i] + sinp*np->v[i]); d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); for (i = 0; i < 3; i++) sr.rdir[i] = r->rdir[i] + d*h[i]; if (DOT(sr.rdir, r->ron) > FTINY) { rayvalue(&sr); multcolor(sr.rcol, np->scolor); addcolor(r->rcol, sr.rcol); break; } } ndims--; } /* compute transmission */ if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { dimlist[ndims++] = (int)np->mp; for (niter = 0; niter < MAXITER; niter++) { if (niter) d = frandom(); else d = urand(ilhash(dimlist,ndims)+1823+samplendx); multisamp(rv, 2, d); d = 2.0*PI * rv[0]; cosp = tcos(d) * np->u_alpha; sinp = tsin(d) * np->v_alpha; d = sqrt(cosp*cosp + sinp*sinp); cosp /= d; sinp /= d; rv[1] = 1.0 - specjitter*rv[1]; if (rv[1] <= FTINY) d = 1.0; else d = sqrt(-log(rv[1]) / (cosp*cosp/(np->u_alpha*np->u_alpha) + sinp*sinp/(np->v_alpha*np->v_alpha))); for (i = 0; i < 3; i++) sr.rdir[i] = np->prdir[i] + d*(cosp*np->u[i] + sinp*np->v[i]); if (DOT(sr.rdir, r->ron) < -FTINY) { normalize(sr.rdir); /* OK, normalize */ rayvalue(&sr); scalecolor(sr.rcol, np->tspec); multcolor(sr.rcol, np->mcolor); /* modify */ addcolor(r->rcol, sr.rcol); break; } } ndims--; } }