ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.32
Committed: Wed Apr 24 15:47:25 1996 UTC (28 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.31: +69 -53 lines
Log Message:
changed code to iterate until specular sample succeeds (MAXITER)

File Contents

# Content
1 /* Copyright (c) 1996 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Shading functions for anisotropic materials.
9 */
10
11 #include "ray.h"
12
13 #include "otypes.h"
14
15 #include "func.h"
16
17 #include "random.h"
18
19 extern double specthresh; /* specular sampling threshold */
20 extern double specjitter; /* specular sampling jitter */
21
22 extern int backvis; /* back faces visible? */
23
24 #ifndef MAXITER
25 #define MAXITER 10 /* maximum # specular ray attempts */
26 #endif
27
28 static agaussamp(), getacoords();
29
30 /*
31 * This routine implements the anisotropic Gaussian
32 * model described by Ward in Siggraph `92 article.
33 * We orient the surface towards the incoming ray, so a single
34 * surface can be used to represent an infinitely thin object.
35 *
36 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
37 * 4+ ux uy uz funcfile [transform...]
38 * 0
39 * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
40 *
41 * Real arguments for MAT_TRANS2 are:
42 * 8 red grn blu rspec u-rough v-rough trans tspec
43 */
44
45 /* specularity flags */
46 #define SP_REFL 01 /* has reflected specular component */
47 #define SP_TRAN 02 /* has transmitted specular */
48 #define SP_FLAT 04 /* reflecting surface is flat */
49 #define SP_RBLT 010 /* reflection below sample threshold */
50 #define SP_TBLT 020 /* transmission below threshold */
51 #define SP_BADU 040 /* bad u direction calculation */
52
53 typedef struct {
54 OBJREC *mp; /* material pointer */
55 RAY *rp; /* ray pointer */
56 short specfl; /* specularity flags, defined above */
57 COLOR mcolor; /* color of this material */
58 COLOR scolor; /* color of specular component */
59 FVECT vrefl; /* vector in reflected direction */
60 FVECT prdir; /* vector in transmitted direction */
61 FVECT u, v; /* u and v vectors orienting anisotropy */
62 double u_alpha; /* u roughness */
63 double v_alpha; /* v roughness */
64 double rdiff, rspec; /* reflected specular, diffuse */
65 double trans; /* transmissivity */
66 double tdiff, tspec; /* transmitted specular, diffuse */
67 FVECT pnorm; /* perturbed surface normal */
68 double pdot; /* perturbed dot product */
69 } ANISODAT; /* anisotropic material data */
70
71
72 diraniso(cval, np, ldir, omega) /* compute source contribution */
73 COLOR cval; /* returned coefficient */
74 register ANISODAT *np; /* material data */
75 FVECT ldir; /* light source direction */
76 double omega; /* light source size */
77 {
78 double ldot;
79 double dtmp, dtmp1, dtmp2;
80 FVECT h;
81 double au2, av2;
82 COLOR ctmp;
83
84 setcolor(cval, 0.0, 0.0, 0.0);
85
86 ldot = DOT(np->pnorm, ldir);
87
88 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
89 return; /* wrong side */
90
91 if (ldot > FTINY && np->rdiff > FTINY) {
92 /*
93 * Compute and add diffuse reflected component to returned
94 * color. The diffuse reflected component will always be
95 * modified by the color of the material.
96 */
97 copycolor(ctmp, np->mcolor);
98 dtmp = ldot * omega * np->rdiff / PI;
99 scalecolor(ctmp, dtmp);
100 addcolor(cval, ctmp);
101 }
102 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
103 /*
104 * Compute specular reflection coefficient using
105 * anisotropic gaussian distribution model.
106 */
107 /* add source width if flat */
108 if (np->specfl & SP_FLAT)
109 au2 = av2 = omega/(4.0*PI);
110 else
111 au2 = av2 = 0.0;
112 au2 += np->u_alpha*np->u_alpha;
113 av2 += np->v_alpha*np->v_alpha;
114 /* half vector */
115 h[0] = ldir[0] - np->rp->rdir[0];
116 h[1] = ldir[1] - np->rp->rdir[1];
117 h[2] = ldir[2] - np->rp->rdir[2];
118 /* ellipse */
119 dtmp1 = DOT(np->u, h);
120 dtmp1 *= dtmp1 / au2;
121 dtmp2 = DOT(np->v, h);
122 dtmp2 *= dtmp2 / av2;
123 /* gaussian */
124 dtmp = DOT(np->pnorm, h);
125 dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp);
126 dtmp = exp(-dtmp) * (0.25/PI)
127 * sqrt(ldot/(np->pdot*au2*av2));
128 /* worth using? */
129 if (dtmp > FTINY) {
130 copycolor(ctmp, np->scolor);
131 dtmp *= omega;
132 scalecolor(ctmp, dtmp);
133 addcolor(cval, ctmp);
134 }
135 }
136 if (ldot < -FTINY && np->tdiff > FTINY) {
137 /*
138 * Compute diffuse transmission.
139 */
140 copycolor(ctmp, np->mcolor);
141 dtmp = -ldot * omega * np->tdiff / PI;
142 scalecolor(ctmp, dtmp);
143 addcolor(cval, ctmp);
144 }
145 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
146 /*
147 * Compute specular transmission. Specular transmission
148 * is always modified by material color.
149 */
150 /* roughness + source */
151 au2 = av2 = omega / PI;
152 au2 += np->u_alpha*np->u_alpha;
153 av2 += np->v_alpha*np->v_alpha;
154 /* "half vector" */
155 h[0] = ldir[0] - np->prdir[0];
156 h[1] = ldir[1] - np->prdir[1];
157 h[2] = ldir[2] - np->prdir[2];
158 dtmp = DOT(h,h);
159 if (dtmp > FTINY*FTINY) {
160 dtmp1 = DOT(h,np->pnorm);
161 dtmp = 1.0 - dtmp1*dtmp1/dtmp;
162 if (dtmp > FTINY*FTINY) {
163 dtmp1 = DOT(h,np->u);
164 dtmp1 *= dtmp1 / au2;
165 dtmp2 = DOT(h,np->v);
166 dtmp2 *= dtmp2 / av2;
167 dtmp = (dtmp1 + dtmp2) / dtmp;
168 }
169 } else
170 dtmp = 0.0;
171 /* gaussian */
172 dtmp = exp(-dtmp) * (1.0/PI)
173 * sqrt(-ldot/(np->pdot*au2*av2));
174 /* worth using? */
175 if (dtmp > FTINY) {
176 copycolor(ctmp, np->mcolor);
177 dtmp *= np->tspec * omega;
178 scalecolor(ctmp, dtmp);
179 addcolor(cval, ctmp);
180 }
181 }
182 }
183
184
185 m_aniso(m, r) /* shade ray that hit something anisotropic */
186 register OBJREC *m;
187 register RAY *r;
188 {
189 ANISODAT nd;
190 COLOR ctmp;
191 register int i;
192 /* easy shadow test */
193 if (r->crtype & SHADOW)
194 return(1);
195
196 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
197 objerror(m, USER, "bad number of real arguments");
198 nd.mp = m;
199 nd.rp = r;
200 /* get material color */
201 setcolor(nd.mcolor, m->oargs.farg[0],
202 m->oargs.farg[1],
203 m->oargs.farg[2]);
204 /* get roughness */
205 nd.specfl = 0;
206 nd.u_alpha = m->oargs.farg[4];
207 nd.v_alpha = m->oargs.farg[5];
208 if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
209 objerror(m, USER, "roughness too small");
210 /* check for back side */
211 if (r->rod < 0.0) {
212 if (!backvis && m->otype != MAT_TRANS2) {
213 raytrans(r);
214 return(1);
215 }
216 flipsurface(r); /* reorient if backvis */
217 }
218 /* get modifiers */
219 raytexture(r, m->omod);
220 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
221 if (nd.pdot < .001)
222 nd.pdot = .001; /* non-zero for diraniso() */
223 multcolor(nd.mcolor, r->pcol); /* modify material color */
224 /* get specular component */
225 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
226 nd.specfl |= SP_REFL;
227 /* compute specular color */
228 if (m->otype == MAT_METAL2)
229 copycolor(nd.scolor, nd.mcolor);
230 else
231 setcolor(nd.scolor, 1.0, 1.0, 1.0);
232 scalecolor(nd.scolor, nd.rspec);
233 /* check threshold */
234 if (specthresh >= nd.rspec-FTINY)
235 nd.specfl |= SP_RBLT;
236 /* compute refl. direction */
237 for (i = 0; i < 3; i++)
238 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
239 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
240 for (i = 0; i < 3; i++) /* safety measure */
241 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
242 }
243 /* compute transmission */
244 if (m->otype == MAT_TRANS2) {
245 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
246 nd.tspec = nd.trans * m->oargs.farg[7];
247 nd.tdiff = nd.trans - nd.tspec;
248 if (nd.tspec > FTINY) {
249 nd.specfl |= SP_TRAN;
250 /* check threshold */
251 if (specthresh >= nd.tspec-FTINY)
252 nd.specfl |= SP_TBLT;
253 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
254 VCOPY(nd.prdir, r->rdir);
255 } else {
256 for (i = 0; i < 3; i++) /* perturb */
257 nd.prdir[i] = r->rdir[i] - r->pert[i];
258 if (DOT(nd.prdir, r->ron) < -FTINY)
259 normalize(nd.prdir); /* OK */
260 else
261 VCOPY(nd.prdir, r->rdir);
262 }
263 }
264 } else
265 nd.tdiff = nd.tspec = nd.trans = 0.0;
266
267 /* diffuse reflection */
268 nd.rdiff = 1.0 - nd.trans - nd.rspec;
269
270 if (r->ro != NULL && isflat(r->ro->otype))
271 nd.specfl |= SP_FLAT;
272
273 getacoords(r, &nd); /* set up coordinates */
274
275 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
276 agaussamp(r, &nd);
277
278 if (nd.rdiff > FTINY) { /* ambient from this side */
279 ambient(ctmp, r, nd.pnorm);
280 if (nd.specfl & SP_RBLT)
281 scalecolor(ctmp, 1.0-nd.trans);
282 else
283 scalecolor(ctmp, nd.rdiff);
284 multcolor(ctmp, nd.mcolor); /* modified by material color */
285 addcolor(r->rcol, ctmp); /* add to returned color */
286 }
287 if (nd.tdiff > FTINY) { /* ambient from other side */
288 FVECT bnorm;
289
290 flipsurface(r);
291 bnorm[0] = -nd.pnorm[0];
292 bnorm[1] = -nd.pnorm[1];
293 bnorm[2] = -nd.pnorm[2];
294 ambient(ctmp, r, bnorm);
295 if (nd.specfl & SP_TBLT)
296 scalecolor(ctmp, nd.trans);
297 else
298 scalecolor(ctmp, nd.tdiff);
299 multcolor(ctmp, nd.mcolor); /* modified by color */
300 addcolor(r->rcol, ctmp);
301 flipsurface(r);
302 }
303 /* add direct component */
304 direct(r, diraniso, &nd);
305
306 return(1);
307 }
308
309
310 static
311 getacoords(r, np) /* set up coordinate system */
312 RAY *r;
313 register ANISODAT *np;
314 {
315 register MFUNC *mf;
316 register int i;
317
318 mf = getfunc(np->mp, 3, 0x7, 1);
319 setfunc(np->mp, r);
320 errno = 0;
321 for (i = 0; i < 3; i++)
322 np->u[i] = evalue(mf->ep[i]);
323 if (errno) {
324 objerror(np->mp, WARNING, "compute error");
325 np->specfl |= SP_BADU;
326 return;
327 }
328 if (mf->f != &unitxf)
329 multv3(np->u, np->u, mf->f->xfm);
330 fcross(np->v, np->pnorm, np->u);
331 if (normalize(np->v) == 0.0) {
332 objerror(np->mp, WARNING, "illegal orientation vector");
333 np->specfl |= SP_BADU;
334 return;
335 }
336 fcross(np->u, np->v, np->pnorm);
337 }
338
339
340 static
341 agaussamp(r, np) /* sample anisotropic gaussian specular */
342 RAY *r;
343 register ANISODAT *np;
344 {
345 RAY sr;
346 FVECT h;
347 double rv[2];
348 double d, sinp, cosp;
349 int niter;
350 register int i;
351 /* compute reflection */
352 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
353 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
354 dimlist[ndims++] = (int)np->mp;
355 for (niter = 0; niter < MAXITER; niter++) {
356 if (niter)
357 d = frandom();
358 else
359 d = urand(ilhash(dimlist,ndims)+samplendx);
360 multisamp(rv, 2, d);
361 d = 2.0*PI * rv[0];
362 cosp = cos(d) * np->u_alpha;
363 sinp = sin(d) * np->v_alpha;
364 d = sqrt(cosp*cosp + sinp*sinp);
365 cosp /= d;
366 sinp /= d;
367 rv[1] = 1.0 - specjitter*rv[1];
368 if (rv[1] <= FTINY)
369 d = 1.0;
370 else
371 d = sqrt(-log(rv[1]) /
372 (cosp*cosp/(np->u_alpha*np->u_alpha) +
373 sinp*sinp/(np->v_alpha*np->v_alpha)));
374 for (i = 0; i < 3; i++)
375 h[i] = np->pnorm[i] +
376 d*(cosp*np->u[i] + sinp*np->v[i]);
377 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
378 for (i = 0; i < 3; i++)
379 sr.rdir[i] = r->rdir[i] + d*h[i];
380 if (DOT(sr.rdir, r->ron) > FTINY) {
381 rayvalue(&sr);
382 multcolor(sr.rcol, np->scolor);
383 addcolor(r->rcol, sr.rcol);
384 break;
385 }
386 }
387 ndims--;
388 }
389 /* compute transmission */
390 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
391 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
392 dimlist[ndims++] = (int)np->mp;
393 for (niter = 0; niter < MAXITER; niter++) {
394 if (niter)
395 d = frandom();
396 else
397 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
398 multisamp(rv, 2, d);
399 d = 2.0*PI * rv[0];
400 cosp = cos(d) * np->u_alpha;
401 sinp = sin(d) * np->v_alpha;
402 d = sqrt(cosp*cosp + sinp*sinp);
403 cosp /= d;
404 sinp /= d;
405 rv[1] = 1.0 - specjitter*rv[1];
406 if (rv[1] <= FTINY)
407 d = 1.0;
408 else
409 d = sqrt(-log(rv[1]) /
410 (cosp*cosp/(np->u_alpha*np->u_alpha) +
411 sinp*sinp/(np->v_alpha*np->u_alpha)));
412 for (i = 0; i < 3; i++)
413 sr.rdir[i] = np->prdir[i] +
414 d*(cosp*np->u[i] + sinp*np->v[i]);
415 if (DOT(sr.rdir, r->ron) < -FTINY) {
416 normalize(sr.rdir); /* OK, normalize */
417 rayvalue(&sr);
418 scalecolor(sr.rcol, np->tspec);
419 multcolor(sr.rcol, np->mcolor); /* modify */
420 addcolor(r->rcol, sr.rcol);
421 break;
422 }
423 }
424 ndims--;
425 }
426 }