ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.3
Committed: Mon Jan 6 18:01:41 1992 UTC (32 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.2: +29 -28 lines
Log Message:
fixed semi-infinite loop bug

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Shading functions for anisotropic materials.
9 */
10
11 #include "ray.h"
12
13 #include "otypes.h"
14
15 #include "func.h"
16
17 #include "random.h"
18
19 /*
20 * This anisotropic reflection model uses a variant on the
21 * exponential Gaussian used in normal.c.
22 * We orient the surface towards the incoming ray, so a single
23 * surface can be used to represent an infinitely thin object.
24 *
25 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
26 * 4+ ux uy uz funcfile [transform...]
27 * 0
28 * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
29 *
30 * Real arguments for MAT_TRANS2 are:
31 * 8 red grn blu rspec u-rough v-rough trans tspec
32 */
33
34 #define BSPEC(m) (6.0) /* specularity parameter b */
35
36 /* specularity flags */
37 #define SP_REFL 01 /* has reflected specular component */
38 #define SP_TRAN 02 /* has transmitted specular */
39 #define SP_PURE 010 /* purely specular (zero roughness) */
40 #define SP_BADU 020 /* bad u direction calculation */
41 #define SP_FLAT 040 /* reflecting surface is flat */
42
43 typedef struct {
44 OBJREC *mp; /* material pointer */
45 RAY *rp; /* ray pointer */
46 short specfl; /* specularity flags, defined above */
47 COLOR mcolor; /* color of this material */
48 COLOR scolor; /* color of specular component */
49 FVECT prdir; /* vector in transmitted direction */
50 FVECT u, v; /* u and v vectors orienting anisotropy */
51 double u_alpha; /* u roughness */
52 double v_alpha; /* v roughness */
53 double rdiff, rspec; /* reflected specular, diffuse */
54 double trans; /* transmissivity */
55 double tdiff, tspec; /* transmitted specular, diffuse */
56 FVECT pnorm; /* perturbed surface normal */
57 double pdot; /* perturbed dot product */
58 } ANISODAT; /* anisotropic material data */
59
60
61 diraniso(cval, np, ldir, omega) /* compute source contribution */
62 COLOR cval; /* returned coefficient */
63 register ANISODAT *np; /* material data */
64 FVECT ldir; /* light source direction */
65 double omega; /* light source size */
66 {
67 double ldot;
68 double dtmp, dtmp2;
69 FVECT h;
70 double au2, av2;
71 COLOR ctmp;
72
73 setcolor(cval, 0.0, 0.0, 0.0);
74
75 ldot = DOT(np->pnorm, ldir);
76
77 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
78 return; /* wrong side */
79
80 if (ldot > FTINY && np->rdiff > FTINY) {
81 /*
82 * Compute and add diffuse reflected component to returned
83 * color. The diffuse reflected component will always be
84 * modified by the color of the material.
85 */
86 copycolor(ctmp, np->mcolor);
87 dtmp = ldot * omega * np->rdiff / PI;
88 scalecolor(ctmp, dtmp);
89 addcolor(cval, ctmp);
90 }
91 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE|SP_BADU)) == SP_REFL) {
92 /*
93 * Compute specular reflection coefficient using
94 * anisotropic gaussian distribution model.
95 */
96 /* add source width if flat */
97 if (np->specfl & SP_FLAT)
98 au2 = av2 = omega/(4.0*PI);
99 else
100 au2 = av2 = 0.0;
101 au2 += np->u_alpha * np->u_alpha;
102 av2 += np->v_alpha * np->v_alpha;
103 /* half vector */
104 h[0] = ldir[0] - np->rp->rdir[0];
105 h[1] = ldir[1] - np->rp->rdir[1];
106 h[2] = ldir[2] - np->rp->rdir[2];
107 normalize(h);
108 /* ellipse */
109 dtmp = DOT(np->u, h);
110 dtmp *= dtmp / au2;
111 dtmp2 = DOT(np->v, h);
112 dtmp2 *= dtmp2 / av2;
113 /* gaussian */
114 dtmp = (dtmp + dtmp2) / (1.0 + DOT(np->pnorm, h));
115 dtmp = exp(-2.0*dtmp) / (4.0*PI * sqrt(au2*av2));
116 /* worth using? */
117 if (dtmp > FTINY) {
118 copycolor(ctmp, np->scolor);
119 dtmp *= omega / np->pdot;
120 scalecolor(ctmp, dtmp);
121 addcolor(cval, ctmp);
122 }
123 }
124 if (ldot < -FTINY && np->tdiff > FTINY) {
125 /*
126 * Compute diffuse transmission.
127 */
128 copycolor(ctmp, np->mcolor);
129 dtmp = -ldot * omega * np->tdiff / PI;
130 scalecolor(ctmp, dtmp);
131 addcolor(cval, ctmp);
132 }
133 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE|SP_BADU)) == SP_TRAN) {
134 /*
135 * Compute specular transmission. Specular transmission
136 * is always modified by material color.
137 */
138 /* roughness + source */
139 /* gaussian */
140 dtmp = 0.0;
141 /* worth using? */
142 if (dtmp > FTINY) {
143 copycolor(ctmp, np->mcolor);
144 dtmp *= np->tspec * omega / np->pdot;
145 scalecolor(ctmp, dtmp);
146 addcolor(cval, ctmp);
147 }
148 }
149 }
150
151
152 m_aniso(m, r) /* shade ray that hit something anisotropic */
153 register OBJREC *m;
154 register RAY *r;
155 {
156 ANISODAT nd;
157 double transtest, transdist;
158 double dtmp;
159 COLOR ctmp;
160 register int i;
161 /* easy shadow test */
162 if (r->crtype & SHADOW && m->otype != MAT_TRANS2)
163 return;
164
165 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
166 objerror(m, USER, "bad number of real arguments");
167 nd.mp = m;
168 nd.rp = r;
169 /* get material color */
170 setcolor(nd.mcolor, m->oargs.farg[0],
171 m->oargs.farg[1],
172 m->oargs.farg[2]);
173 /* get roughness */
174 nd.specfl = 0;
175 nd.u_alpha = m->oargs.farg[4];
176 nd.v_alpha = m->oargs.farg[5];
177 if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY)
178 nd.specfl |= SP_PURE;
179 /* reorient if necessary */
180 if (r->rod < 0.0)
181 flipsurface(r);
182 /* get modifiers */
183 raytexture(r, m->omod);
184 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
185 if (nd.pdot < .001)
186 nd.pdot = .001; /* non-zero for diraniso() */
187 multcolor(nd.mcolor, r->pcol); /* modify material color */
188 transtest = 0;
189 /* get specular component */
190 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
191 nd.specfl |= SP_REFL;
192 /* compute specular color */
193 if (m->otype == MAT_METAL2)
194 copycolor(nd.scolor, nd.mcolor);
195 else
196 setcolor(nd.scolor, 1.0, 1.0, 1.0);
197 scalecolor(nd.scolor, nd.rspec);
198 /* improved model */
199 dtmp = exp(-BSPEC(m)*nd.pdot);
200 for (i = 0; i < 3; i++)
201 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
202 nd.rspec += (1.0-nd.rspec)*dtmp;
203
204 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
205 RAY lr;
206 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
207 for (i = 0; i < 3; i++)
208 lr.rdir[i] = r->rdir[i] +
209 2.0*nd.pdot*nd.pnorm[i];
210 rayvalue(&lr);
211 multcolor(lr.rcol, nd.scolor);
212 addcolor(r->rcol, lr.rcol);
213 }
214 }
215 }
216 /* compute transmission */
217 if (m->otype == MAT_TRANS) {
218 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
219 nd.tspec = nd.trans * m->oargs.farg[7];
220 nd.tdiff = nd.trans - nd.tspec;
221 if (nd.tspec > FTINY) {
222 nd.specfl |= SP_TRAN;
223 if (r->crtype & SHADOW ||
224 DOT(r->pert,r->pert) <= FTINY*FTINY) {
225 VCOPY(nd.prdir, r->rdir);
226 transtest = 2;
227 } else {
228 for (i = 0; i < 3; i++) /* perturb */
229 nd.prdir[i] = r->rdir[i] -
230 .75*r->pert[i];
231 normalize(nd.prdir);
232 }
233 }
234 } else
235 nd.tdiff = nd.tspec = nd.trans = 0.0;
236 /* transmitted ray */
237 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
238 RAY lr;
239 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
240 VCOPY(lr.rdir, nd.prdir);
241 rayvalue(&lr);
242 scalecolor(lr.rcol, nd.tspec);
243 multcolor(lr.rcol, nd.mcolor); /* modified by color */
244 addcolor(r->rcol, lr.rcol);
245 transtest *= bright(lr.rcol);
246 transdist = r->rot + lr.rt;
247 }
248 }
249
250 if (r->crtype & SHADOW) /* the rest is shadow */
251 return;
252 /* diffuse reflection */
253 nd.rdiff = 1.0 - nd.trans - nd.rspec;
254
255 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
256 return; /* 100% pure specular */
257
258 getacoords(r, &nd); /* set up coordinates */
259
260 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & (SP_PURE|SP_BADU)))
261 agaussamp(r, &nd);
262
263 if (nd.rdiff > FTINY) { /* ambient from this side */
264 ambient(ctmp, r);
265 scalecolor(ctmp, nd.rdiff);
266 multcolor(ctmp, nd.mcolor); /* modified by material color */
267 addcolor(r->rcol, ctmp); /* add to returned color */
268 }
269 if (nd.tdiff > FTINY) { /* ambient from other side */
270 flipsurface(r);
271 ambient(ctmp, r);
272 scalecolor(ctmp, nd.tdiff);
273 multcolor(ctmp, nd.mcolor); /* modified by color */
274 addcolor(r->rcol, ctmp);
275 flipsurface(r);
276 }
277 /* add direct component */
278 direct(r, diraniso, &nd);
279 /* check distance */
280 if (transtest > bright(r->rcol))
281 r->rt = transdist;
282 }
283
284
285 static
286 getacoords(r, np) /* set up coordinate system */
287 RAY *r;
288 register ANISODAT *np;
289 {
290 register MFUNC *mf;
291 register int i;
292
293 mf = getfunc(np->mp, 3, 0x7, 1);
294 setfunc(np->mp, r);
295 errno = 0;
296 for (i = 0; i < 3; i++)
297 np->u[i] = evalue(mf->ep[i]);
298 if (errno) {
299 objerror(np->mp, WARNING, "compute error");
300 np->specfl |= SP_BADU;
301 return;
302 }
303 multv3(np->u, np->u, mf->f->xfm);
304 fcross(np->v, np->pnorm, np->u);
305 if (normalize(np->v) == 0.0) {
306 objerror(np->mp, WARNING, "illegal orientation vector");
307 np->specfl |= SP_BADU;
308 return;
309 }
310 fcross(np->u, np->v, np->pnorm);
311 }
312
313
314 static
315 agaussamp(r, np) /* sample anisotropic gaussian specular */
316 RAY *r;
317 register ANISODAT *np;
318 {
319 RAY sr;
320 FVECT h;
321 double rv[2];
322 double d, sinp, cosp;
323 int ntries;
324 register int i;
325 /* compute reflection */
326 if (np->specfl & SP_REFL &&
327 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
328 dimlist[ndims++] = (int)np->mp;
329 for (ntries = 0; ntries < 10; ntries++) {
330 dimlist[ndims] = ntries * 3601;
331 d = urand(ilhash(dimlist,ndims+1)+samplendx);
332 multisamp(rv, 2, d);
333 d = 2.0*PI * rv[0];
334 cosp = np->u_alpha * cos(d);
335 sinp = np->v_alpha * sin(d);
336 d = sqrt(cosp*cosp + sinp*sinp);
337 cosp /= d;
338 sinp /= d;
339 if (rv[1] <= FTINY)
340 d = 1.0;
341 else
342 d = sqrt(-log(rv[1]) /
343 (cosp*cosp/(np->u_alpha*np->u_alpha) +
344 sinp*sinp/(np->v_alpha*np->v_alpha)));
345 for (i = 0; i < 3; i++)
346 h[i] = np->pnorm[i] +
347 d*(cosp*np->u[i] + sinp*np->v[i]);
348 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
349 for (i = 0; i < 3; i++)
350 sr.rdir[i] = r->rdir[i] + d*h[i];
351 if (DOT(sr.rdir, r->ron) > FTINY) {
352 rayvalue(&sr);
353 multcolor(sr.rcol, np->scolor);
354 addcolor(r->rcol, sr.rcol);
355 break;
356 }
357 }
358 ndims--;
359 }
360 /* compute transmission */
361 }