ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.28
Committed: Wed Dec 21 09:51:44 1994 UTC (29 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.27: +10 -3 lines
Log Message:
added -bv option for back face visibility (normally on)

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Shading functions for anisotropic materials.
9 */
10
11 #include "ray.h"
12
13 #include "otypes.h"
14
15 #include "func.h"
16
17 #include "random.h"
18
19 extern double specthresh; /* specular sampling threshold */
20 extern double specjitter; /* specular sampling jitter */
21
22 extern int backvis; /* back faces visible? */
23
24 static agaussamp(), getacoords();
25
26 /*
27 * This routine implements the anisotropic Gaussian
28 * model described by Ward in Siggraph `92 article.
29 * We orient the surface towards the incoming ray, so a single
30 * surface can be used to represent an infinitely thin object.
31 *
32 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
33 * 4+ ux uy uz funcfile [transform...]
34 * 0
35 * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
36 *
37 * Real arguments for MAT_TRANS2 are:
38 * 8 red grn blu rspec u-rough v-rough trans tspec
39 */
40
41 /* specularity flags */
42 #define SP_REFL 01 /* has reflected specular component */
43 #define SP_TRAN 02 /* has transmitted specular */
44 #define SP_FLAT 04 /* reflecting surface is flat */
45 #define SP_RBLT 010 /* reflection below sample threshold */
46 #define SP_TBLT 020 /* transmission below threshold */
47 #define SP_BADU 040 /* bad u direction calculation */
48
49 typedef struct {
50 OBJREC *mp; /* material pointer */
51 RAY *rp; /* ray pointer */
52 short specfl; /* specularity flags, defined above */
53 COLOR mcolor; /* color of this material */
54 COLOR scolor; /* color of specular component */
55 FVECT vrefl; /* vector in reflected direction */
56 FVECT prdir; /* vector in transmitted direction */
57 FVECT u, v; /* u and v vectors orienting anisotropy */
58 double u_alpha; /* u roughness */
59 double v_alpha; /* v roughness */
60 double rdiff, rspec; /* reflected specular, diffuse */
61 double trans; /* transmissivity */
62 double tdiff, tspec; /* transmitted specular, diffuse */
63 FVECT pnorm; /* perturbed surface normal */
64 double pdot; /* perturbed dot product */
65 } ANISODAT; /* anisotropic material data */
66
67
68 diraniso(cval, np, ldir, omega) /* compute source contribution */
69 COLOR cval; /* returned coefficient */
70 register ANISODAT *np; /* material data */
71 FVECT ldir; /* light source direction */
72 double omega; /* light source size */
73 {
74 double ldot;
75 double dtmp, dtmp1, dtmp2;
76 FVECT h;
77 double au2, av2;
78 COLOR ctmp;
79
80 setcolor(cval, 0.0, 0.0, 0.0);
81
82 ldot = DOT(np->pnorm, ldir);
83
84 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
85 return; /* wrong side */
86
87 if (ldot > FTINY && np->rdiff > FTINY) {
88 /*
89 * Compute and add diffuse reflected component to returned
90 * color. The diffuse reflected component will always be
91 * modified by the color of the material.
92 */
93 copycolor(ctmp, np->mcolor);
94 dtmp = ldot * omega * np->rdiff / PI;
95 scalecolor(ctmp, dtmp);
96 addcolor(cval, ctmp);
97 }
98 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
99 /*
100 * Compute specular reflection coefficient using
101 * anisotropic gaussian distribution model.
102 */
103 /* add source width if flat */
104 if (np->specfl & SP_FLAT)
105 au2 = av2 = omega/(4.0*PI);
106 else
107 au2 = av2 = 0.0;
108 au2 += np->u_alpha*np->u_alpha;
109 av2 += np->v_alpha*np->v_alpha;
110 /* half vector */
111 h[0] = ldir[0] - np->rp->rdir[0];
112 h[1] = ldir[1] - np->rp->rdir[1];
113 h[2] = ldir[2] - np->rp->rdir[2];
114 /* ellipse */
115 dtmp1 = DOT(np->u, h);
116 dtmp1 *= dtmp1 / au2;
117 dtmp2 = DOT(np->v, h);
118 dtmp2 *= dtmp2 / av2;
119 /* gaussian */
120 dtmp = DOT(np->pnorm, h);
121 dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp);
122 dtmp = exp(-dtmp) * (0.25/PI)
123 * sqrt(ldot/(np->pdot*au2*av2));
124 /* worth using? */
125 if (dtmp > FTINY) {
126 copycolor(ctmp, np->scolor);
127 dtmp *= omega;
128 scalecolor(ctmp, dtmp);
129 addcolor(cval, ctmp);
130 }
131 }
132 if (ldot < -FTINY && np->tdiff > FTINY) {
133 /*
134 * Compute diffuse transmission.
135 */
136 copycolor(ctmp, np->mcolor);
137 dtmp = -ldot * omega * np->tdiff / PI;
138 scalecolor(ctmp, dtmp);
139 addcolor(cval, ctmp);
140 }
141 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
142 /*
143 * Compute specular transmission. Specular transmission
144 * is always modified by material color.
145 */
146 /* roughness + source */
147 au2 = av2 = omega / PI;
148 au2 += np->u_alpha*np->u_alpha;
149 av2 += np->v_alpha*np->v_alpha;
150 /* "half vector" */
151 h[0] = ldir[0] - np->prdir[0];
152 h[1] = ldir[1] - np->prdir[1];
153 h[2] = ldir[2] - np->prdir[2];
154 dtmp = DOT(h,h);
155 if (dtmp > FTINY*FTINY) {
156 dtmp1 = DOT(h,np->pnorm);
157 dtmp = 1.0 - dtmp1*dtmp1/dtmp;
158 if (dtmp > FTINY*FTINY) {
159 dtmp1 = DOT(h,np->u);
160 dtmp1 *= dtmp1 / au2;
161 dtmp2 = DOT(h,np->v);
162 dtmp2 *= dtmp2 / av2;
163 dtmp = (dtmp1 + dtmp2) / dtmp;
164 }
165 } else
166 dtmp = 0.0;
167 /* gaussian */
168 dtmp = exp(-dtmp) * (1.0/PI)
169 * sqrt(-ldot/(np->pdot*au2*av2));
170 /* worth using? */
171 if (dtmp > FTINY) {
172 copycolor(ctmp, np->mcolor);
173 dtmp *= np->tspec * omega;
174 scalecolor(ctmp, dtmp);
175 addcolor(cval, ctmp);
176 }
177 }
178 }
179
180
181 m_aniso(m, r) /* shade ray that hit something anisotropic */
182 register OBJREC *m;
183 register RAY *r;
184 {
185 ANISODAT nd;
186 COLOR ctmp;
187 register int i;
188 /* easy shadow test */
189 if (r->crtype & SHADOW)
190 return(1);
191
192 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
193 objerror(m, USER, "bad number of real arguments");
194 nd.mp = m;
195 nd.rp = r;
196 /* get material color */
197 setcolor(nd.mcolor, m->oargs.farg[0],
198 m->oargs.farg[1],
199 m->oargs.farg[2]);
200 /* get roughness */
201 nd.specfl = 0;
202 nd.u_alpha = m->oargs.farg[4];
203 nd.v_alpha = m->oargs.farg[5];
204 if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
205 objerror(m, USER, "roughness too small");
206 /* check for back side */
207 if (r->rod < 0.0) {
208 if (!backvis && m->otype != MAT_TRANS2) {
209 raytrans(r);
210 return(1);
211 }
212 flipsurface(r); /* reorient if backvis */
213 }
214 /* get modifiers */
215 raytexture(r, m->omod);
216 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
217 if (nd.pdot < .001)
218 nd.pdot = .001; /* non-zero for diraniso() */
219 multcolor(nd.mcolor, r->pcol); /* modify material color */
220 /* get specular component */
221 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
222 nd.specfl |= SP_REFL;
223 /* compute specular color */
224 if (m->otype == MAT_METAL2)
225 copycolor(nd.scolor, nd.mcolor);
226 else
227 setcolor(nd.scolor, 1.0, 1.0, 1.0);
228 scalecolor(nd.scolor, nd.rspec);
229 /* check threshold */
230 if (specthresh >= nd.rspec-FTINY)
231 nd.specfl |= SP_RBLT;
232 /* compute refl. direction */
233 for (i = 0; i < 3; i++)
234 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
235 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
236 for (i = 0; i < 3; i++) /* safety measure */
237 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
238 }
239 /* compute transmission */
240 if (m->otype == MAT_TRANS2) {
241 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
242 nd.tspec = nd.trans * m->oargs.farg[7];
243 nd.tdiff = nd.trans - nd.tspec;
244 if (nd.tspec > FTINY) {
245 nd.specfl |= SP_TRAN;
246 /* check threshold */
247 if (specthresh >= nd.tspec-FTINY)
248 nd.specfl |= SP_TBLT;
249 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
250 VCOPY(nd.prdir, r->rdir);
251 } else {
252 for (i = 0; i < 3; i++) /* perturb */
253 nd.prdir[i] = r->rdir[i] - r->pert[i];
254 if (DOT(nd.prdir, r->ron) < -FTINY)
255 normalize(nd.prdir); /* OK */
256 else
257 VCOPY(nd.prdir, r->rdir);
258 }
259 }
260 } else
261 nd.tdiff = nd.tspec = nd.trans = 0.0;
262
263 /* diffuse reflection */
264 nd.rdiff = 1.0 - nd.trans - nd.rspec;
265
266 if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
267 r->ro->otype == OBJ_RING))
268 nd.specfl |= SP_FLAT;
269
270 getacoords(r, &nd); /* set up coordinates */
271
272 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
273 agaussamp(r, &nd);
274
275 if (nd.rdiff > FTINY) { /* ambient from this side */
276 ambient(ctmp, r);
277 if (nd.specfl & SP_RBLT)
278 scalecolor(ctmp, 1.0-nd.trans);
279 else
280 scalecolor(ctmp, nd.rdiff);
281 multcolor(ctmp, nd.mcolor); /* modified by material color */
282 addcolor(r->rcol, ctmp); /* add to returned color */
283 }
284 if (nd.tdiff > FTINY) { /* ambient from other side */
285 flipsurface(r);
286 ambient(ctmp, r);
287 if (nd.specfl & SP_TBLT)
288 scalecolor(ctmp, nd.trans);
289 else
290 scalecolor(ctmp, nd.tdiff);
291 multcolor(ctmp, nd.mcolor); /* modified by color */
292 addcolor(r->rcol, ctmp);
293 flipsurface(r);
294 }
295 /* add direct component */
296 direct(r, diraniso, &nd);
297
298 return(1);
299 }
300
301
302 static
303 getacoords(r, np) /* set up coordinate system */
304 RAY *r;
305 register ANISODAT *np;
306 {
307 register MFUNC *mf;
308 register int i;
309
310 mf = getfunc(np->mp, 3, 0x7, 1);
311 setfunc(np->mp, r);
312 errno = 0;
313 for (i = 0; i < 3; i++)
314 np->u[i] = evalue(mf->ep[i]);
315 if (errno) {
316 objerror(np->mp, WARNING, "compute error");
317 np->specfl |= SP_BADU;
318 return;
319 }
320 if (mf->f != &unitxf)
321 multv3(np->u, np->u, mf->f->xfm);
322 fcross(np->v, np->pnorm, np->u);
323 if (normalize(np->v) == 0.0) {
324 objerror(np->mp, WARNING, "illegal orientation vector");
325 np->specfl |= SP_BADU;
326 return;
327 }
328 fcross(np->u, np->v, np->pnorm);
329 }
330
331
332 static
333 agaussamp(r, np) /* sample anisotropic gaussian specular */
334 RAY *r;
335 register ANISODAT *np;
336 {
337 RAY sr;
338 FVECT h;
339 double rv[2];
340 double d, sinp, cosp;
341 register int i;
342 /* compute reflection */
343 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
344 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
345 dimlist[ndims++] = (int)np->mp;
346 d = urand(ilhash(dimlist,ndims)+samplendx);
347 multisamp(rv, 2, d);
348 d = 2.0*PI * rv[0];
349 cosp = cos(d) * np->u_alpha;
350 sinp = sin(d) * np->v_alpha;
351 d = sqrt(cosp*cosp + sinp*sinp);
352 cosp /= d;
353 sinp /= d;
354 rv[1] = 1.0 - specjitter*rv[1];
355 if (rv[1] <= FTINY)
356 d = 1.0;
357 else
358 d = sqrt(-log(rv[1]) /
359 (cosp*cosp/(np->u_alpha*np->u_alpha) +
360 sinp*sinp/(np->v_alpha*np->v_alpha)));
361 for (i = 0; i < 3; i++)
362 h[i] = np->pnorm[i] +
363 d*(cosp*np->u[i] + sinp*np->v[i]);
364 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
365 for (i = 0; i < 3; i++)
366 sr.rdir[i] = r->rdir[i] + d*h[i];
367 if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */
368 VCOPY(sr.rdir, np->vrefl); /* jitter no good */
369 rayvalue(&sr);
370 multcolor(sr.rcol, np->scolor);
371 addcolor(r->rcol, sr.rcol);
372 ndims--;
373 }
374 /* compute transmission */
375 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
376 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
377 dimlist[ndims++] = (int)np->mp;
378 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
379 multisamp(rv, 2, d);
380 d = 2.0*PI * rv[0];
381 cosp = cos(d) * np->u_alpha;
382 sinp = sin(d) * np->v_alpha;
383 d = sqrt(cosp*cosp + sinp*sinp);
384 cosp /= d;
385 sinp /= d;
386 rv[1] = 1.0 - specjitter*rv[1];
387 if (rv[1] <= FTINY)
388 d = 1.0;
389 else
390 d = sqrt(-log(rv[1]) /
391 (cosp*cosp/(np->u_alpha*np->u_alpha) +
392 sinp*sinp/(np->v_alpha*np->u_alpha)));
393 for (i = 0; i < 3; i++)
394 sr.rdir[i] = np->prdir[i] +
395 d*(cosp*np->u[i] + sinp*np->v[i]);
396 if (DOT(sr.rdir, r->ron) < -FTINY)
397 normalize(sr.rdir); /* OK, normalize */
398 else
399 VCOPY(sr.rdir, np->prdir); /* else no jitter */
400 rayvalue(&sr);
401 scalecolor(sr.rcol, np->tspec);
402 multcolor(sr.rcol, np->mcolor); /* modify by color */
403 addcolor(r->rcol, sr.rcol);
404 ndims--;
405 }
406 }