ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.27
Committed: Wed Jan 12 16:46:32 1994 UTC (30 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.26: +3 -1 lines
Log Message:
made mixtures work with materials

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Shading functions for anisotropic materials.
9 */
10
11 #include "ray.h"
12
13 #include "otypes.h"
14
15 #include "func.h"
16
17 #include "random.h"
18
19 extern double specthresh; /* specular sampling threshold */
20 extern double specjitter; /* specular sampling jitter */
21
22 static agaussamp(), getacoords();
23
24 /*
25 * This routine implements the anisotropic Gaussian
26 * model described by Ward in Siggraph `92 article.
27 * We orient the surface towards the incoming ray, so a single
28 * surface can be used to represent an infinitely thin object.
29 *
30 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
31 * 4+ ux uy uz funcfile [transform...]
32 * 0
33 * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
34 *
35 * Real arguments for MAT_TRANS2 are:
36 * 8 red grn blu rspec u-rough v-rough trans tspec
37 */
38
39 /* specularity flags */
40 #define SP_REFL 01 /* has reflected specular component */
41 #define SP_TRAN 02 /* has transmitted specular */
42 #define SP_FLAT 04 /* reflecting surface is flat */
43 #define SP_RBLT 010 /* reflection below sample threshold */
44 #define SP_TBLT 020 /* transmission below threshold */
45 #define SP_BADU 040 /* bad u direction calculation */
46
47 typedef struct {
48 OBJREC *mp; /* material pointer */
49 RAY *rp; /* ray pointer */
50 short specfl; /* specularity flags, defined above */
51 COLOR mcolor; /* color of this material */
52 COLOR scolor; /* color of specular component */
53 FVECT vrefl; /* vector in reflected direction */
54 FVECT prdir; /* vector in transmitted direction */
55 FVECT u, v; /* u and v vectors orienting anisotropy */
56 double u_alpha; /* u roughness */
57 double v_alpha; /* v roughness */
58 double rdiff, rspec; /* reflected specular, diffuse */
59 double trans; /* transmissivity */
60 double tdiff, tspec; /* transmitted specular, diffuse */
61 FVECT pnorm; /* perturbed surface normal */
62 double pdot; /* perturbed dot product */
63 } ANISODAT; /* anisotropic material data */
64
65
66 diraniso(cval, np, ldir, omega) /* compute source contribution */
67 COLOR cval; /* returned coefficient */
68 register ANISODAT *np; /* material data */
69 FVECT ldir; /* light source direction */
70 double omega; /* light source size */
71 {
72 double ldot;
73 double dtmp, dtmp1, dtmp2;
74 FVECT h;
75 double au2, av2;
76 COLOR ctmp;
77
78 setcolor(cval, 0.0, 0.0, 0.0);
79
80 ldot = DOT(np->pnorm, ldir);
81
82 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
83 return; /* wrong side */
84
85 if (ldot > FTINY && np->rdiff > FTINY) {
86 /*
87 * Compute and add diffuse reflected component to returned
88 * color. The diffuse reflected component will always be
89 * modified by the color of the material.
90 */
91 copycolor(ctmp, np->mcolor);
92 dtmp = ldot * omega * np->rdiff / PI;
93 scalecolor(ctmp, dtmp);
94 addcolor(cval, ctmp);
95 }
96 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
97 /*
98 * Compute specular reflection coefficient using
99 * anisotropic gaussian distribution model.
100 */
101 /* add source width if flat */
102 if (np->specfl & SP_FLAT)
103 au2 = av2 = omega/(4.0*PI);
104 else
105 au2 = av2 = 0.0;
106 au2 += np->u_alpha*np->u_alpha;
107 av2 += np->v_alpha*np->v_alpha;
108 /* half vector */
109 h[0] = ldir[0] - np->rp->rdir[0];
110 h[1] = ldir[1] - np->rp->rdir[1];
111 h[2] = ldir[2] - np->rp->rdir[2];
112 /* ellipse */
113 dtmp1 = DOT(np->u, h);
114 dtmp1 *= dtmp1 / au2;
115 dtmp2 = DOT(np->v, h);
116 dtmp2 *= dtmp2 / av2;
117 /* gaussian */
118 dtmp = DOT(np->pnorm, h);
119 dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp);
120 dtmp = exp(-dtmp) * (0.25/PI)
121 * sqrt(ldot/(np->pdot*au2*av2));
122 /* worth using? */
123 if (dtmp > FTINY) {
124 copycolor(ctmp, np->scolor);
125 dtmp *= omega;
126 scalecolor(ctmp, dtmp);
127 addcolor(cval, ctmp);
128 }
129 }
130 if (ldot < -FTINY && np->tdiff > FTINY) {
131 /*
132 * Compute diffuse transmission.
133 */
134 copycolor(ctmp, np->mcolor);
135 dtmp = -ldot * omega * np->tdiff / PI;
136 scalecolor(ctmp, dtmp);
137 addcolor(cval, ctmp);
138 }
139 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
140 /*
141 * Compute specular transmission. Specular transmission
142 * is always modified by material color.
143 */
144 /* roughness + source */
145 au2 = av2 = omega / PI;
146 au2 += np->u_alpha*np->u_alpha;
147 av2 += np->v_alpha*np->v_alpha;
148 /* "half vector" */
149 h[0] = ldir[0] - np->prdir[0];
150 h[1] = ldir[1] - np->prdir[1];
151 h[2] = ldir[2] - np->prdir[2];
152 dtmp = DOT(h,h);
153 if (dtmp > FTINY*FTINY) {
154 dtmp1 = DOT(h,np->pnorm);
155 dtmp = 1.0 - dtmp1*dtmp1/dtmp;
156 if (dtmp > FTINY*FTINY) {
157 dtmp1 = DOT(h,np->u);
158 dtmp1 *= dtmp1 / au2;
159 dtmp2 = DOT(h,np->v);
160 dtmp2 *= dtmp2 / av2;
161 dtmp = (dtmp1 + dtmp2) / dtmp;
162 }
163 } else
164 dtmp = 0.0;
165 /* gaussian */
166 dtmp = exp(-dtmp) * (1.0/PI)
167 * sqrt(-ldot/(np->pdot*au2*av2));
168 /* worth using? */
169 if (dtmp > FTINY) {
170 copycolor(ctmp, np->mcolor);
171 dtmp *= np->tspec * omega;
172 scalecolor(ctmp, dtmp);
173 addcolor(cval, ctmp);
174 }
175 }
176 }
177
178
179 m_aniso(m, r) /* shade ray that hit something anisotropic */
180 register OBJREC *m;
181 register RAY *r;
182 {
183 ANISODAT nd;
184 COLOR ctmp;
185 register int i;
186 /* easy shadow test */
187 if (r->crtype & SHADOW)
188 return(1);
189
190 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
191 objerror(m, USER, "bad number of real arguments");
192 nd.mp = m;
193 nd.rp = r;
194 /* get material color */
195 setcolor(nd.mcolor, m->oargs.farg[0],
196 m->oargs.farg[1],
197 m->oargs.farg[2]);
198 /* get roughness */
199 nd.specfl = 0;
200 nd.u_alpha = m->oargs.farg[4];
201 nd.v_alpha = m->oargs.farg[5];
202 if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
203 objerror(m, USER, "roughness too small");
204 /* reorient if necessary */
205 if (r->rod < 0.0)
206 flipsurface(r);
207 /* get modifiers */
208 raytexture(r, m->omod);
209 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
210 if (nd.pdot < .001)
211 nd.pdot = .001; /* non-zero for diraniso() */
212 multcolor(nd.mcolor, r->pcol); /* modify material color */
213 /* get specular component */
214 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
215 nd.specfl |= SP_REFL;
216 /* compute specular color */
217 if (m->otype == MAT_METAL2)
218 copycolor(nd.scolor, nd.mcolor);
219 else
220 setcolor(nd.scolor, 1.0, 1.0, 1.0);
221 scalecolor(nd.scolor, nd.rspec);
222 /* check threshold */
223 if (specthresh >= nd.rspec-FTINY)
224 nd.specfl |= SP_RBLT;
225 /* compute refl. direction */
226 for (i = 0; i < 3; i++)
227 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
228 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
229 for (i = 0; i < 3; i++) /* safety measure */
230 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
231 }
232 /* compute transmission */
233 if (m->otype == MAT_TRANS2) {
234 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
235 nd.tspec = nd.trans * m->oargs.farg[7];
236 nd.tdiff = nd.trans - nd.tspec;
237 if (nd.tspec > FTINY) {
238 nd.specfl |= SP_TRAN;
239 /* check threshold */
240 if (specthresh >= nd.tspec-FTINY)
241 nd.specfl |= SP_TBLT;
242 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
243 VCOPY(nd.prdir, r->rdir);
244 } else {
245 for (i = 0; i < 3; i++) /* perturb */
246 nd.prdir[i] = r->rdir[i] - r->pert[i];
247 if (DOT(nd.prdir, r->ron) < -FTINY)
248 normalize(nd.prdir); /* OK */
249 else
250 VCOPY(nd.prdir, r->rdir);
251 }
252 }
253 } else
254 nd.tdiff = nd.tspec = nd.trans = 0.0;
255
256 /* diffuse reflection */
257 nd.rdiff = 1.0 - nd.trans - nd.rspec;
258
259 if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
260 r->ro->otype == OBJ_RING))
261 nd.specfl |= SP_FLAT;
262
263 getacoords(r, &nd); /* set up coordinates */
264
265 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
266 agaussamp(r, &nd);
267
268 if (nd.rdiff > FTINY) { /* ambient from this side */
269 ambient(ctmp, r);
270 if (nd.specfl & SP_RBLT)
271 scalecolor(ctmp, 1.0-nd.trans);
272 else
273 scalecolor(ctmp, nd.rdiff);
274 multcolor(ctmp, nd.mcolor); /* modified by material color */
275 addcolor(r->rcol, ctmp); /* add to returned color */
276 }
277 if (nd.tdiff > FTINY) { /* ambient from other side */
278 flipsurface(r);
279 ambient(ctmp, r);
280 if (nd.specfl & SP_TBLT)
281 scalecolor(ctmp, nd.trans);
282 else
283 scalecolor(ctmp, nd.tdiff);
284 multcolor(ctmp, nd.mcolor); /* modified by color */
285 addcolor(r->rcol, ctmp);
286 flipsurface(r);
287 }
288 /* add direct component */
289 direct(r, diraniso, &nd);
290
291 return(1);
292 }
293
294
295 static
296 getacoords(r, np) /* set up coordinate system */
297 RAY *r;
298 register ANISODAT *np;
299 {
300 register MFUNC *mf;
301 register int i;
302
303 mf = getfunc(np->mp, 3, 0x7, 1);
304 setfunc(np->mp, r);
305 errno = 0;
306 for (i = 0; i < 3; i++)
307 np->u[i] = evalue(mf->ep[i]);
308 if (errno) {
309 objerror(np->mp, WARNING, "compute error");
310 np->specfl |= SP_BADU;
311 return;
312 }
313 if (mf->f != &unitxf)
314 multv3(np->u, np->u, mf->f->xfm);
315 fcross(np->v, np->pnorm, np->u);
316 if (normalize(np->v) == 0.0) {
317 objerror(np->mp, WARNING, "illegal orientation vector");
318 np->specfl |= SP_BADU;
319 return;
320 }
321 fcross(np->u, np->v, np->pnorm);
322 }
323
324
325 static
326 agaussamp(r, np) /* sample anisotropic gaussian specular */
327 RAY *r;
328 register ANISODAT *np;
329 {
330 RAY sr;
331 FVECT h;
332 double rv[2];
333 double d, sinp, cosp;
334 register int i;
335 /* compute reflection */
336 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
337 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
338 dimlist[ndims++] = (int)np->mp;
339 d = urand(ilhash(dimlist,ndims)+samplendx);
340 multisamp(rv, 2, d);
341 d = 2.0*PI * rv[0];
342 cosp = cos(d) * np->u_alpha;
343 sinp = sin(d) * np->v_alpha;
344 d = sqrt(cosp*cosp + sinp*sinp);
345 cosp /= d;
346 sinp /= d;
347 rv[1] = 1.0 - specjitter*rv[1];
348 if (rv[1] <= FTINY)
349 d = 1.0;
350 else
351 d = sqrt(-log(rv[1]) /
352 (cosp*cosp/(np->u_alpha*np->u_alpha) +
353 sinp*sinp/(np->v_alpha*np->v_alpha)));
354 for (i = 0; i < 3; i++)
355 h[i] = np->pnorm[i] +
356 d*(cosp*np->u[i] + sinp*np->v[i]);
357 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
358 for (i = 0; i < 3; i++)
359 sr.rdir[i] = r->rdir[i] + d*h[i];
360 if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */
361 VCOPY(sr.rdir, np->vrefl); /* jitter no good */
362 rayvalue(&sr);
363 multcolor(sr.rcol, np->scolor);
364 addcolor(r->rcol, sr.rcol);
365 ndims--;
366 }
367 /* compute transmission */
368 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
369 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
370 dimlist[ndims++] = (int)np->mp;
371 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
372 multisamp(rv, 2, d);
373 d = 2.0*PI * rv[0];
374 cosp = cos(d) * np->u_alpha;
375 sinp = sin(d) * np->v_alpha;
376 d = sqrt(cosp*cosp + sinp*sinp);
377 cosp /= d;
378 sinp /= d;
379 rv[1] = 1.0 - specjitter*rv[1];
380 if (rv[1] <= FTINY)
381 d = 1.0;
382 else
383 d = sqrt(-log(rv[1]) /
384 (cosp*cosp/(np->u_alpha*np->u_alpha) +
385 sinp*sinp/(np->v_alpha*np->u_alpha)));
386 for (i = 0; i < 3; i++)
387 sr.rdir[i] = np->prdir[i] +
388 d*(cosp*np->u[i] + sinp*np->v[i]);
389 if (DOT(sr.rdir, r->ron) < -FTINY)
390 normalize(sr.rdir); /* OK, normalize */
391 else
392 VCOPY(sr.rdir, np->prdir); /* else no jitter */
393 rayvalue(&sr);
394 scalecolor(sr.rcol, np->tspec);
395 multcolor(sr.rcol, np->mcolor); /* modify by color */
396 addcolor(r->rcol, sr.rcol);
397 ndims--;
398 }
399 }