ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.16
Committed: Fri May 15 13:07:58 1992 UTC (31 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.15: +47 -24 lines
Log Message:
bug fixes in specular transmission

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Shading functions for anisotropic materials.
9 */
10
11 #include "ray.h"
12
13 #include "otypes.h"
14
15 #include "func.h"
16
17 #include "random.h"
18
19 extern double specthresh; /* specular sampling threshold */
20 extern double specjitter; /* specular sampling jitter */
21
22 /*
23 * This anisotropic reflection model uses a variant on the
24 * exponential Gaussian used in normal.c.
25 * We orient the surface towards the incoming ray, so a single
26 * surface can be used to represent an infinitely thin object.
27 *
28 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
29 * 4+ ux uy uz funcfile [transform...]
30 * 0
31 * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
32 *
33 * Real arguments for MAT_TRANS2 are:
34 * 8 red grn blu rspec u-rough v-rough trans tspec
35 */
36
37 #define BSPEC(m) (6.0) /* specularity parameter b */
38
39 /* specularity flags */
40 #define SP_REFL 01 /* has reflected specular component */
41 #define SP_TRAN 02 /* has transmitted specular */
42 #define SP_FLAT 04 /* reflecting surface is flat */
43 #define SP_RBLT 010 /* reflection below sample threshold */
44 #define SP_TBLT 020 /* transmission below threshold */
45 #define SP_BADU 040 /* bad u direction calculation */
46
47 typedef struct {
48 OBJREC *mp; /* material pointer */
49 RAY *rp; /* ray pointer */
50 short specfl; /* specularity flags, defined above */
51 COLOR mcolor; /* color of this material */
52 COLOR scolor; /* color of specular component */
53 FVECT vrefl; /* vector in reflected direction */
54 FVECT prdir; /* vector in transmitted direction */
55 FVECT u, v; /* u and v vectors orienting anisotropy */
56 double u_alpha2; /* u roughness squared */
57 double v_alpha2; /* v roughness squared */
58 double rdiff, rspec; /* reflected specular, diffuse */
59 double trans; /* transmissivity */
60 double tdiff, tspec; /* transmitted specular, diffuse */
61 FVECT pnorm; /* perturbed surface normal */
62 double pdot; /* perturbed dot product */
63 } ANISODAT; /* anisotropic material data */
64
65
66 diraniso(cval, np, ldir, omega) /* compute source contribution */
67 COLOR cval; /* returned coefficient */
68 register ANISODAT *np; /* material data */
69 FVECT ldir; /* light source direction */
70 double omega; /* light source size */
71 {
72 double ldot;
73 double dtmp, dtmp1, dtmp2;
74 FVECT h;
75 double au2, av2;
76 COLOR ctmp;
77
78 setcolor(cval, 0.0, 0.0, 0.0);
79
80 ldot = DOT(np->pnorm, ldir);
81
82 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
83 return; /* wrong side */
84
85 if (ldot > FTINY && np->rdiff > FTINY) {
86 /*
87 * Compute and add diffuse reflected component to returned
88 * color. The diffuse reflected component will always be
89 * modified by the color of the material.
90 */
91 copycolor(ctmp, np->mcolor);
92 dtmp = ldot * omega * np->rdiff / PI;
93 scalecolor(ctmp, dtmp);
94 addcolor(cval, ctmp);
95 }
96 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
97 /*
98 * Compute specular reflection coefficient using
99 * anisotropic gaussian distribution model.
100 */
101 /* add source width if flat */
102 if (np->specfl & SP_FLAT)
103 au2 = av2 = omega/(4.0*PI);
104 else
105 au2 = av2 = 0.0;
106 au2 += np->u_alpha2;
107 av2 += np->v_alpha2;
108 /* half vector */
109 h[0] = ldir[0] - np->rp->rdir[0];
110 h[1] = ldir[1] - np->rp->rdir[1];
111 h[2] = ldir[2] - np->rp->rdir[2];
112 normalize(h);
113 /* ellipse */
114 dtmp1 = DOT(np->u, h);
115 dtmp1 *= dtmp1 / au2;
116 dtmp2 = DOT(np->v, h);
117 dtmp2 *= dtmp2 / av2;
118 /* gaussian */
119 dtmp = (dtmp1 + dtmp2) / (1.0 + DOT(np->pnorm, h));
120 dtmp = exp(-2.0*dtmp) * 1.0/(4.0*PI)
121 * sqrt(ldot/(np->pdot*au2*av2));
122 /* worth using? */
123 if (dtmp > FTINY) {
124 copycolor(ctmp, np->scolor);
125 dtmp *= omega;
126 scalecolor(ctmp, dtmp);
127 addcolor(cval, ctmp);
128 }
129 }
130 if (ldot < -FTINY && np->tdiff > FTINY) {
131 /*
132 * Compute diffuse transmission.
133 */
134 copycolor(ctmp, np->mcolor);
135 dtmp = -ldot * omega * np->tdiff / PI;
136 scalecolor(ctmp, dtmp);
137 addcolor(cval, ctmp);
138 }
139 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
140 /*
141 * Compute specular transmission. Specular transmission
142 * is always modified by material color.
143 */
144 /* roughness + source */
145 au2 = av2 = omega / PI;
146 au2 += .25 * np->u_alpha2;
147 av2 += .25 * np->v_alpha2;
148 /* "half vector" */
149 h[0] = ldir[0] - np->prdir[0];
150 h[1] = ldir[1] - np->prdir[1];
151 h[2] = ldir[2] - np->prdir[2];
152 dtmp = DOT(h,np->pnorm);
153 dtmp = DOT(h,h) - dtmp*dtmp;
154 if (dtmp > FTINY*FTINY) {
155 dtmp1 = DOT(h,np->u);
156 dtmp1 = dtmp1*dtmp1 / (au2*dtmp);
157 dtmp2 = DOT(h,np->v);
158 dtmp2 = dtmp2*dtmp2 / (av2*dtmp);
159 dtmp = 2. - 2.*DOT(ldir,np->prdir);
160 dtmp *= dtmp1 + dtmp2;
161 } else
162 dtmp = 0.0;
163 /* gaussian */
164 dtmp = exp(-dtmp) * 1.0/(4.0*PI)
165 * sqrt(-ldot/(np->pdot*au2*av2));
166 /* worth using? */
167 if (dtmp > FTINY) {
168 copycolor(ctmp, np->mcolor);
169 dtmp *= np->tspec * omega;
170 scalecolor(ctmp, dtmp);
171 addcolor(cval, ctmp);
172 }
173 }
174 }
175
176
177 m_aniso(m, r) /* shade ray that hit something anisotropic */
178 register OBJREC *m;
179 register RAY *r;
180 {
181 ANISODAT nd;
182 double dtmp;
183 COLOR ctmp;
184 register int i;
185 /* easy shadow test */
186 if (r->crtype & SHADOW)
187 return;
188
189 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
190 objerror(m, USER, "bad number of real arguments");
191 nd.mp = m;
192 nd.rp = r;
193 /* get material color */
194 setcolor(nd.mcolor, m->oargs.farg[0],
195 m->oargs.farg[1],
196 m->oargs.farg[2]);
197 /* get roughness */
198 nd.specfl = 0;
199 nd.u_alpha2 = m->oargs.farg[4];
200 nd.u_alpha2 *= nd.u_alpha2;
201 nd.v_alpha2 = m->oargs.farg[5];
202 nd.v_alpha2 *= nd.v_alpha2;
203 if (nd.u_alpha2 < FTINY*FTINY || nd.v_alpha2 <= FTINY*FTINY)
204 objerror(m, USER, "roughness too small");
205 /* reorient if necessary */
206 if (r->rod < 0.0)
207 flipsurface(r);
208 /* get modifiers */
209 raytexture(r, m->omod);
210 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
211 if (nd.pdot < .001)
212 nd.pdot = .001; /* non-zero for diraniso() */
213 multcolor(nd.mcolor, r->pcol); /* modify material color */
214 /* get specular component */
215 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
216 nd.specfl |= SP_REFL;
217 /* compute specular color */
218 if (m->otype == MAT_METAL2)
219 copycolor(nd.scolor, nd.mcolor);
220 else
221 setcolor(nd.scolor, 1.0, 1.0, 1.0);
222 scalecolor(nd.scolor, nd.rspec);
223 /* improved model */
224 dtmp = exp(-BSPEC(m)*nd.pdot);
225 for (i = 0; i < 3; i++)
226 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
227 nd.rspec += (1.0-nd.rspec)*dtmp;
228 /* check threshold */
229 if (specthresh > FTINY &&
230 (specthresh >= 1.-FTINY ||
231 specthresh + .05 - .1*frandom() > nd.rspec))
232 nd.specfl |= SP_RBLT;
233 /* compute refl. direction */
234 for (i = 0; i < 3; i++)
235 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
236 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
237 for (i = 0; i < 3; i++) /* safety measure */
238 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
239 }
240 /* compute transmission */
241 if (m->otype == MAT_TRANS2) {
242 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
243 nd.tspec = nd.trans * m->oargs.farg[7];
244 nd.tdiff = nd.trans - nd.tspec;
245 if (nd.tspec > FTINY) {
246 nd.specfl |= SP_TRAN;
247 /* check threshold */
248 if (specthresh > FTINY &&
249 (specthresh >= 1.-FTINY ||
250 specthresh + .05 - .1*frandom() > nd.tspec))
251 nd.specfl |= SP_TBLT;
252 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
253 VCOPY(nd.prdir, r->rdir);
254 } else {
255 for (i = 0; i < 3; i++) /* perturb */
256 nd.prdir[i] = r->rdir[i] -
257 0.5*r->pert[i];
258 if (DOT(nd.prdir, r->ron) < -FTINY)
259 normalize(nd.prdir); /* OK */
260 else
261 VCOPY(nd.prdir, r->rdir);
262 }
263 }
264 } else
265 nd.tdiff = nd.tspec = nd.trans = 0.0;
266
267 /* diffuse reflection */
268 nd.rdiff = 1.0 - nd.trans - nd.rspec;
269
270 if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
271 r->ro->otype == OBJ_RING))
272 nd.specfl |= SP_FLAT;
273
274 getacoords(r, &nd); /* set up coordinates */
275
276 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
277 agaussamp(r, &nd);
278
279 if (nd.rdiff > FTINY) { /* ambient from this side */
280 ambient(ctmp, r);
281 if (nd.specfl & SP_RBLT)
282 scalecolor(ctmp, 1.0-nd.trans);
283 else
284 scalecolor(ctmp, nd.rdiff);
285 multcolor(ctmp, nd.mcolor); /* modified by material color */
286 addcolor(r->rcol, ctmp); /* add to returned color */
287 }
288 if (nd.tdiff > FTINY) { /* ambient from other side */
289 flipsurface(r);
290 ambient(ctmp, r);
291 if (nd.specfl & SP_TBLT)
292 scalecolor(ctmp, nd.trans);
293 else
294 scalecolor(ctmp, nd.tdiff);
295 multcolor(ctmp, nd.mcolor); /* modified by color */
296 addcolor(r->rcol, ctmp);
297 flipsurface(r);
298 }
299 /* add direct component */
300 direct(r, diraniso, &nd);
301 }
302
303
304 static
305 getacoords(r, np) /* set up coordinate system */
306 RAY *r;
307 register ANISODAT *np;
308 {
309 register MFUNC *mf;
310 register int i;
311
312 mf = getfunc(np->mp, 3, 0x7, 1);
313 setfunc(np->mp, r);
314 errno = 0;
315 for (i = 0; i < 3; i++)
316 np->u[i] = evalue(mf->ep[i]);
317 if (errno) {
318 objerror(np->mp, WARNING, "compute error");
319 np->specfl |= SP_BADU;
320 return;
321 }
322 if (mf->f != &unitxf)
323 multv3(np->u, np->u, mf->f->xfm);
324 fcross(np->v, np->pnorm, np->u);
325 if (normalize(np->v) == 0.0) {
326 objerror(np->mp, WARNING, "illegal orientation vector");
327 np->specfl |= SP_BADU;
328 return;
329 }
330 fcross(np->u, np->v, np->pnorm);
331 }
332
333
334 static
335 agaussamp(r, np) /* sample anisotropic gaussian specular */
336 RAY *r;
337 register ANISODAT *np;
338 {
339 RAY sr;
340 FVECT h;
341 double rv[2];
342 double d, sinp, cosp;
343 register int i;
344 /* compute reflection */
345 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
346 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
347 dimlist[ndims++] = (int)np->mp;
348 d = urand(ilhash(dimlist,ndims)+samplendx);
349 multisamp(rv, 2, d);
350 d = 2.0*PI * rv[0];
351 cosp = cos(d);
352 sinp = sin(d);
353 d = sqrt(np->u_alpha2*cosp*cosp + np->v_alpha2*sinp*sinp);
354 cosp /= d;
355 sinp /= d;
356 rv[1] = 1.0 - specjitter*rv[1];
357 if (rv[1] <= FTINY)
358 d = 1.0;
359 else
360 d = sqrt(-log(rv[1]) /
361 (cosp*cosp/np->u_alpha2 +
362 sinp*sinp/np->v_alpha2));
363 for (i = 0; i < 3; i++)
364 h[i] = np->pnorm[i] +
365 d*(cosp*np->u[i] + sinp*np->v[i]);
366 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
367 for (i = 0; i < 3; i++)
368 sr.rdir[i] = r->rdir[i] + d*h[i];
369 if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */
370 VCOPY(sr.rdir, np->vrefl); /* jitter no good */
371 rayvalue(&sr);
372 multcolor(sr.rcol, np->scolor);
373 addcolor(r->rcol, sr.rcol);
374 ndims--;
375 }
376 /* compute transmission */
377 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
378 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
379 dimlist[ndims++] = (int)np->mp;
380 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
381 multisamp(rv, 2, d);
382 d = 2.0*PI * rv[0];
383 cosp = cos(d);
384 sinp = sin(d);
385 rv[1] = 1.0 - specjitter*rv[1];
386 if (rv[1] <= FTINY)
387 d = 1.0;
388 else
389 d = sqrt(-log(rv[1]) /
390 (cosp*cosp*4./np->u_alpha2 +
391 sinp*sinp*4./np->v_alpha2));
392 for (i = 0; i < 3; i++)
393 sr.rdir[i] = np->prdir[i] +
394 d*(cosp*np->u[i] + sinp*np->v[i]);
395 if (DOT(sr.rdir, r->ron) < -FTINY)
396 normalize(sr.rdir); /* OK, normalize */
397 else
398 VCOPY(sr.rdir, np->prdir); /* else no jitter */
399 rayvalue(&sr);
400 scalecolor(sr.rcol, np->tspec);
401 multcolor(sr.rcol, np->mcolor); /* modify by color */
402 addcolor(r->rcol, sr.rcol);
403 ndims--;
404 }
405 }