ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.14
Committed: Wed Apr 22 09:05:27 1992 UTC (32 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.13: +7 -0 lines
Log Message:
reinstated Fresnel factors for roughened surfaces

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Shading functions for anisotropic materials.
9 */
10
11 #include "ray.h"
12
13 #include "otypes.h"
14
15 #include "func.h"
16
17 #include "random.h"
18
19 extern double specthresh; /* specular sampling threshold */
20 extern double specjitter; /* specular sampling jitter */
21
22 /*
23 * This anisotropic reflection model uses a variant on the
24 * exponential Gaussian used in normal.c.
25 * We orient the surface towards the incoming ray, so a single
26 * surface can be used to represent an infinitely thin object.
27 *
28 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
29 * 4+ ux uy uz funcfile [transform...]
30 * 0
31 * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
32 *
33 * Real arguments for MAT_TRANS2 are:
34 * 8 red grn blu rspec u-rough v-rough trans tspec
35 */
36
37 #define BSPEC(m) (6.0) /* specularity parameter b */
38
39 /* specularity flags */
40 #define SP_REFL 01 /* has reflected specular component */
41 #define SP_TRAN 02 /* has transmitted specular */
42 #define SP_FLAT 04 /* reflecting surface is flat */
43 #define SP_RBLT 010 /* reflection below sample threshold */
44 #define SP_TBLT 020 /* transmission below threshold */
45 #define SP_BADU 040 /* bad u direction calculation */
46
47 typedef struct {
48 OBJREC *mp; /* material pointer */
49 RAY *rp; /* ray pointer */
50 short specfl; /* specularity flags, defined above */
51 COLOR mcolor; /* color of this material */
52 COLOR scolor; /* color of specular component */
53 FVECT vrefl; /* vector in reflected direction */
54 FVECT prdir; /* vector in transmitted direction */
55 FVECT u, v; /* u and v vectors orienting anisotropy */
56 double u_alpha; /* u roughness */
57 double v_alpha; /* v roughness */
58 double rdiff, rspec; /* reflected specular, diffuse */
59 double trans; /* transmissivity */
60 double tdiff, tspec; /* transmitted specular, diffuse */
61 FVECT pnorm; /* perturbed surface normal */
62 double pdot; /* perturbed dot product */
63 } ANISODAT; /* anisotropic material data */
64
65
66 diraniso(cval, np, ldir, omega) /* compute source contribution */
67 COLOR cval; /* returned coefficient */
68 register ANISODAT *np; /* material data */
69 FVECT ldir; /* light source direction */
70 double omega; /* light source size */
71 {
72 double ldot;
73 double dtmp, dtmp2;
74 FVECT h;
75 double au2, av2;
76 COLOR ctmp;
77
78 setcolor(cval, 0.0, 0.0, 0.0);
79
80 ldot = DOT(np->pnorm, ldir);
81
82 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
83 return; /* wrong side */
84
85 if (ldot > FTINY && np->rdiff > FTINY) {
86 /*
87 * Compute and add diffuse reflected component to returned
88 * color. The diffuse reflected component will always be
89 * modified by the color of the material.
90 */
91 copycolor(ctmp, np->mcolor);
92 dtmp = ldot * omega * np->rdiff / PI;
93 scalecolor(ctmp, dtmp);
94 addcolor(cval, ctmp);
95 }
96 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
97 /*
98 * Compute specular reflection coefficient using
99 * anisotropic gaussian distribution model.
100 */
101 /* add source width if flat */
102 if (np->specfl & SP_FLAT)
103 au2 = av2 = omega/(4.0*PI);
104 else
105 au2 = av2 = 0.0;
106 au2 += np->u_alpha * np->u_alpha;
107 av2 += np->v_alpha * np->v_alpha;
108 /* half vector */
109 h[0] = ldir[0] - np->rp->rdir[0];
110 h[1] = ldir[1] - np->rp->rdir[1];
111 h[2] = ldir[2] - np->rp->rdir[2];
112 normalize(h);
113 /* ellipse */
114 dtmp = DOT(np->u, h);
115 dtmp *= dtmp / au2;
116 dtmp2 = DOT(np->v, h);
117 dtmp2 *= dtmp2 / av2;
118 /* gaussian */
119 dtmp = (dtmp + dtmp2) / (1.0 + DOT(np->pnorm, h));
120 dtmp = exp(-2.0*dtmp) / (4.0*PI * sqrt(au2*av2));
121 /* worth using? */
122 if (dtmp > FTINY) {
123 copycolor(ctmp, np->scolor);
124 dtmp *= omega * sqrt(ldot/np->pdot);
125 scalecolor(ctmp, dtmp);
126 addcolor(cval, ctmp);
127 }
128 }
129 if (ldot < -FTINY && np->tdiff > FTINY) {
130 /*
131 * Compute diffuse transmission.
132 */
133 copycolor(ctmp, np->mcolor);
134 dtmp = -ldot * omega * np->tdiff / PI;
135 scalecolor(ctmp, dtmp);
136 addcolor(cval, ctmp);
137 }
138 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
139 /*
140 * Compute specular transmission. Specular transmission
141 * is always modified by material color.
142 */
143 /* roughness + source */
144 /* gaussian */
145 dtmp = 0.0;
146 /* worth using? */
147 if (dtmp > FTINY) {
148 copycolor(ctmp, np->mcolor);
149 dtmp *= np->tspec * omega * sqrt(ldot/np->pdot);
150 scalecolor(ctmp, dtmp);
151 addcolor(cval, ctmp);
152 }
153 }
154 }
155
156
157 m_aniso(m, r) /* shade ray that hit something anisotropic */
158 register OBJREC *m;
159 register RAY *r;
160 {
161 ANISODAT nd;
162 double dtmp;
163 COLOR ctmp;
164 register int i;
165 /* easy shadow test */
166 if (r->crtype & SHADOW)
167 return;
168
169 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
170 objerror(m, USER, "bad number of real arguments");
171 nd.mp = m;
172 nd.rp = r;
173 /* get material color */
174 setcolor(nd.mcolor, m->oargs.farg[0],
175 m->oargs.farg[1],
176 m->oargs.farg[2]);
177 /* get roughness */
178 nd.specfl = 0;
179 nd.u_alpha = m->oargs.farg[4];
180 nd.v_alpha = m->oargs.farg[5];
181 if (nd.u_alpha < 1e-6 || nd.v_alpha <= 1e-6)
182 objerror(m, USER, "roughness too small");
183 /* reorient if necessary */
184 if (r->rod < 0.0)
185 flipsurface(r);
186 /* get modifiers */
187 raytexture(r, m->omod);
188 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
189 if (nd.pdot < .001)
190 nd.pdot = .001; /* non-zero for diraniso() */
191 multcolor(nd.mcolor, r->pcol); /* modify material color */
192 /* get specular component */
193 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
194 nd.specfl |= SP_REFL;
195 /* compute specular color */
196 if (m->otype == MAT_METAL2)
197 copycolor(nd.scolor, nd.mcolor);
198 else
199 setcolor(nd.scolor, 1.0, 1.0, 1.0);
200 scalecolor(nd.scolor, nd.rspec);
201 /* improved model */
202 dtmp = exp(-BSPEC(m)*nd.pdot);
203 for (i = 0; i < 3; i++)
204 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
205 nd.rspec += (1.0-nd.rspec)*dtmp;
206 /* check threshold */
207 if (specthresh > FTINY &&
208 (specthresh >= 1.-FTINY ||
209 specthresh > nd.rspec))
210 nd.specfl |= SP_RBLT;
211 /* compute refl. direction */
212 for (i = 0; i < 3; i++)
213 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
214 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
215 for (i = 0; i < 3; i++) /* safety measure */
216 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
217 }
218 /* compute transmission */
219 if (m->otype == MAT_TRANS) {
220 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
221 nd.tspec = nd.trans * m->oargs.farg[7];
222 nd.tdiff = nd.trans - nd.tspec;
223 if (nd.tspec > FTINY) {
224 nd.specfl |= SP_TRAN;
225 /* check threshold */
226 if (specthresh > FTINY &&
227 (specthresh >= 1.-FTINY ||
228 specthresh > nd.tspec))
229 nd.specfl |= SP_TBLT;
230 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
231 VCOPY(nd.prdir, r->rdir);
232 } else {
233 for (i = 0; i < 3; i++) /* perturb */
234 nd.prdir[i] = r->rdir[i] -
235 0.5*r->pert[i];
236 if (DOT(nd.prdir, r->ron) < -FTINY)
237 normalize(nd.prdir); /* OK */
238 else
239 VCOPY(nd.prdir, r->rdir);
240 }
241 }
242 } else
243 nd.tdiff = nd.tspec = nd.trans = 0.0;
244
245 /* diffuse reflection */
246 nd.rdiff = 1.0 - nd.trans - nd.rspec;
247
248 if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
249 r->ro->otype == OBJ_RING))
250 nd.specfl |= SP_FLAT;
251
252 getacoords(r, &nd); /* set up coordinates */
253
254 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
255 agaussamp(r, &nd);
256
257 if (nd.rdiff > FTINY) { /* ambient from this side */
258 ambient(ctmp, r);
259 if (nd.specfl & SP_RBLT)
260 scalecolor(ctmp, 1.0-nd.trans);
261 else
262 scalecolor(ctmp, nd.rdiff);
263 multcolor(ctmp, nd.mcolor); /* modified by material color */
264 addcolor(r->rcol, ctmp); /* add to returned color */
265 }
266 if (nd.tdiff > FTINY) { /* ambient from other side */
267 flipsurface(r);
268 ambient(ctmp, r);
269 if (nd.specfl & SP_TBLT)
270 scalecolor(ctmp, nd.trans);
271 else
272 scalecolor(ctmp, nd.tdiff);
273 multcolor(ctmp, nd.mcolor); /* modified by color */
274 addcolor(r->rcol, ctmp);
275 flipsurface(r);
276 }
277 /* add direct component */
278 direct(r, diraniso, &nd);
279 }
280
281
282 static
283 getacoords(r, np) /* set up coordinate system */
284 RAY *r;
285 register ANISODAT *np;
286 {
287 register MFUNC *mf;
288 register int i;
289
290 mf = getfunc(np->mp, 3, 0x7, 1);
291 setfunc(np->mp, r);
292 errno = 0;
293 for (i = 0; i < 3; i++)
294 np->u[i] = evalue(mf->ep[i]);
295 if (errno) {
296 objerror(np->mp, WARNING, "compute error");
297 np->specfl |= SP_BADU;
298 return;
299 }
300 multv3(np->u, np->u, mf->f->xfm);
301 fcross(np->v, np->pnorm, np->u);
302 if (normalize(np->v) == 0.0) {
303 objerror(np->mp, WARNING, "illegal orientation vector");
304 np->specfl |= SP_BADU;
305 return;
306 }
307 fcross(np->u, np->v, np->pnorm);
308 }
309
310
311 static
312 agaussamp(r, np) /* sample anisotropic gaussian specular */
313 RAY *r;
314 register ANISODAT *np;
315 {
316 RAY sr;
317 FVECT h;
318 double rv[2];
319 double d, sinp, cosp;
320 register int i;
321 /* compute reflection */
322 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
323 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
324 dimlist[ndims++] = (int)np->mp;
325 d = urand(ilhash(dimlist,ndims)+samplendx);
326 multisamp(rv, 2, d);
327 d = 2.0*PI * rv[0];
328 cosp = np->u_alpha * cos(d);
329 sinp = np->v_alpha * sin(d);
330 d = sqrt(cosp*cosp + sinp*sinp);
331 cosp /= d;
332 sinp /= d;
333 rv[1] = 1.0 - specjitter*rv[1];
334 if (rv[1] <= FTINY)
335 d = 1.0;
336 else
337 d = sqrt(-log(rv[1]) /
338 (cosp*cosp/(np->u_alpha*np->u_alpha) +
339 sinp*sinp/(np->v_alpha*np->v_alpha)));
340 for (i = 0; i < 3; i++)
341 h[i] = np->pnorm[i] +
342 d*(cosp*np->u[i] + sinp*np->v[i]);
343 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
344 for (i = 0; i < 3; i++)
345 sr.rdir[i] = r->rdir[i] + d*h[i];
346 if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */
347 VCOPY(sr.rdir, np->vrefl); /* jitter no good */
348 rayvalue(&sr);
349 multcolor(sr.rcol, np->scolor);
350 addcolor(r->rcol, sr.rcol);
351 ndims--;
352 }
353 /* compute transmission */
354 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
355 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
356 dimlist[ndims++] = (int)np->mp;
357 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
358 multisamp(rv, 2, d);
359 d = 2.0*PI * rv[0];
360 cosp = cos(d);
361 sinp = sin(d);
362 rv[1] = 1.0 - specjitter*rv[1];
363 if (rv[1] <= FTINY)
364 d = 1.0;
365 else
366 d = sqrt(-log(rv[1]) /
367 (cosp*cosp*4./(np->u_alpha*np->u_alpha) +
368 sinp*sinp*4./(np->v_alpha*np->v_alpha)));
369 for (i = 0; i < 3; i++)
370 sr.rdir[i] = np->prdir[i] +
371 d*(cosp*np->u[i] + sinp*np->v[i]);
372 if (DOT(sr.rdir, r->ron) < -FTINY)
373 normalize(sr.rdir); /* OK, normalize */
374 else
375 VCOPY(sr.rdir, np->prdir); /* else no jitter */
376 rayvalue(&sr);
377 scalecolor(sr.rcol, np->tspec);
378 multcolor(sr.rcol, np->mcolor); /* modify by color */
379 addcolor(r->rcol, sr.rcol);
380 ndims--;
381 }
382 }