ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.12
Committed: Thu Apr 16 13:29:06 1992 UTC (32 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.11: +4 -12 lines
Log Message:
fixed bug that caused ambient to be overcounted for polished surf's
changed use of Fresnel correction so it will only affect polished surf's

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Shading functions for anisotropic materials.
9 */
10
11 #include "ray.h"
12
13 #include "otypes.h"
14
15 #include "func.h"
16
17 #include "random.h"
18
19 extern double specthresh; /* specular sampling threshold */
20 extern double specjitter; /* specular sampling jitter */
21
22 /*
23 * This anisotropic reflection model uses a variant on the
24 * exponential Gaussian used in normal.c.
25 * We orient the surface towards the incoming ray, so a single
26 * surface can be used to represent an infinitely thin object.
27 *
28 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
29 * 4+ ux uy uz funcfile [transform...]
30 * 0
31 * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
32 *
33 * Real arguments for MAT_TRANS2 are:
34 * 8 red grn blu rspec u-rough v-rough trans tspec
35 */
36
37 /* specularity flags */
38 #define SP_REFL 01 /* has reflected specular component */
39 #define SP_TRAN 02 /* has transmitted specular */
40 #define SP_FLAT 04 /* reflecting surface is flat */
41 #define SP_RBLT 010 /* reflection below sample threshold */
42 #define SP_TBLT 020 /* transmission below threshold */
43 #define SP_BADU 040 /* bad u direction calculation */
44
45 typedef struct {
46 OBJREC *mp; /* material pointer */
47 RAY *rp; /* ray pointer */
48 short specfl; /* specularity flags, defined above */
49 COLOR mcolor; /* color of this material */
50 COLOR scolor; /* color of specular component */
51 FVECT vrefl; /* vector in reflected direction */
52 FVECT prdir; /* vector in transmitted direction */
53 FVECT u, v; /* u and v vectors orienting anisotropy */
54 double u_alpha; /* u roughness */
55 double v_alpha; /* v roughness */
56 double rdiff, rspec; /* reflected specular, diffuse */
57 double trans; /* transmissivity */
58 double tdiff, tspec; /* transmitted specular, diffuse */
59 FVECT pnorm; /* perturbed surface normal */
60 double pdot; /* perturbed dot product */
61 } ANISODAT; /* anisotropic material data */
62
63
64 diraniso(cval, np, ldir, omega) /* compute source contribution */
65 COLOR cval; /* returned coefficient */
66 register ANISODAT *np; /* material data */
67 FVECT ldir; /* light source direction */
68 double omega; /* light source size */
69 {
70 double ldot;
71 double dtmp, dtmp2;
72 FVECT h;
73 double au2, av2;
74 COLOR ctmp;
75
76 setcolor(cval, 0.0, 0.0, 0.0);
77
78 ldot = DOT(np->pnorm, ldir);
79
80 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
81 return; /* wrong side */
82
83 if (ldot > FTINY && np->rdiff > FTINY) {
84 /*
85 * Compute and add diffuse reflected component to returned
86 * color. The diffuse reflected component will always be
87 * modified by the color of the material.
88 */
89 copycolor(ctmp, np->mcolor);
90 dtmp = ldot * omega * np->rdiff / PI;
91 scalecolor(ctmp, dtmp);
92 addcolor(cval, ctmp);
93 }
94 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
95 /*
96 * Compute specular reflection coefficient using
97 * anisotropic gaussian distribution model.
98 */
99 /* add source width if flat */
100 if (np->specfl & SP_FLAT)
101 au2 = av2 = omega/(4.0*PI);
102 else
103 au2 = av2 = 0.0;
104 au2 += np->u_alpha * np->u_alpha;
105 av2 += np->v_alpha * np->v_alpha;
106 /* half vector */
107 h[0] = ldir[0] - np->rp->rdir[0];
108 h[1] = ldir[1] - np->rp->rdir[1];
109 h[2] = ldir[2] - np->rp->rdir[2];
110 normalize(h);
111 /* ellipse */
112 dtmp = DOT(np->u, h);
113 dtmp *= dtmp / au2;
114 dtmp2 = DOT(np->v, h);
115 dtmp2 *= dtmp2 / av2;
116 /* gaussian */
117 dtmp = (dtmp + dtmp2) / (1.0 + DOT(np->pnorm, h));
118 dtmp = exp(-2.0*dtmp) / (4.0*PI * sqrt(au2*av2));
119 /* worth using? */
120 if (dtmp > FTINY) {
121 copycolor(ctmp, np->scolor);
122 dtmp *= omega / np->pdot;
123 scalecolor(ctmp, dtmp);
124 addcolor(cval, ctmp);
125 }
126 }
127 if (ldot < -FTINY && np->tdiff > FTINY) {
128 /*
129 * Compute diffuse transmission.
130 */
131 copycolor(ctmp, np->mcolor);
132 dtmp = -ldot * omega * np->tdiff / PI;
133 scalecolor(ctmp, dtmp);
134 addcolor(cval, ctmp);
135 }
136 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
137 /*
138 * Compute specular transmission. Specular transmission
139 * is always modified by material color.
140 */
141 /* roughness + source */
142 /* gaussian */
143 dtmp = 0.0;
144 /* worth using? */
145 if (dtmp > FTINY) {
146 copycolor(ctmp, np->mcolor);
147 dtmp *= np->tspec * omega / np->pdot;
148 scalecolor(ctmp, dtmp);
149 addcolor(cval, ctmp);
150 }
151 }
152 }
153
154
155 m_aniso(m, r) /* shade ray that hit something anisotropic */
156 register OBJREC *m;
157 register RAY *r;
158 {
159 ANISODAT nd;
160 double dtmp;
161 COLOR ctmp;
162 register int i;
163 /* easy shadow test */
164 if (r->crtype & SHADOW)
165 return;
166
167 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
168 objerror(m, USER, "bad number of real arguments");
169 nd.mp = m;
170 nd.rp = r;
171 /* get material color */
172 setcolor(nd.mcolor, m->oargs.farg[0],
173 m->oargs.farg[1],
174 m->oargs.farg[2]);
175 /* get roughness */
176 nd.specfl = 0;
177 nd.u_alpha = m->oargs.farg[4];
178 nd.v_alpha = m->oargs.farg[5];
179 if (nd.u_alpha < 1e-6 || nd.v_alpha <= 1e-6)
180 objerror(m, USER, "roughness too small");
181 /* reorient if necessary */
182 if (r->rod < 0.0)
183 flipsurface(r);
184 /* get modifiers */
185 raytexture(r, m->omod);
186 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
187 if (nd.pdot < .001)
188 nd.pdot = .001; /* non-zero for diraniso() */
189 multcolor(nd.mcolor, r->pcol); /* modify material color */
190 /* get specular component */
191 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
192 nd.specfl |= SP_REFL;
193 /* compute specular color */
194 if (m->otype == MAT_METAL2)
195 copycolor(nd.scolor, nd.mcolor);
196 else
197 setcolor(nd.scolor, 1.0, 1.0, 1.0);
198 scalecolor(nd.scolor, nd.rspec);
199 /* check threshold */
200 if (specthresh > FTINY &&
201 (specthresh >= 1.-FTINY ||
202 specthresh > nd.rspec))
203 nd.specfl |= SP_RBLT;
204 /* compute refl. direction */
205 for (i = 0; i < 3; i++)
206 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
207 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
208 for (i = 0; i < 3; i++) /* safety measure */
209 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
210 }
211 /* compute transmission */
212 if (m->otype == MAT_TRANS) {
213 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
214 nd.tspec = nd.trans * m->oargs.farg[7];
215 nd.tdiff = nd.trans - nd.tspec;
216 if (nd.tspec > FTINY) {
217 nd.specfl |= SP_TRAN;
218 /* check threshold */
219 if (specthresh > FTINY &&
220 (specthresh >= 1.-FTINY ||
221 specthresh > nd.tspec))
222 nd.specfl |= SP_TBLT;
223 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
224 VCOPY(nd.prdir, r->rdir);
225 } else {
226 for (i = 0; i < 3; i++) /* perturb */
227 nd.prdir[i] = r->rdir[i] -
228 0.5*r->pert[i];
229 if (DOT(nd.prdir, r->ron) < -FTINY)
230 normalize(nd.prdir); /* OK */
231 else
232 VCOPY(nd.prdir, r->rdir);
233 }
234 }
235 } else
236 nd.tdiff = nd.tspec = nd.trans = 0.0;
237
238 /* diffuse reflection */
239 nd.rdiff = 1.0 - nd.trans - nd.rspec;
240
241 if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
242 r->ro->otype == OBJ_RING))
243 nd.specfl |= SP_FLAT;
244
245 getacoords(r, &nd); /* set up coordinates */
246
247 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
248 agaussamp(r, &nd);
249
250 if (nd.rdiff > FTINY) { /* ambient from this side */
251 ambient(ctmp, r);
252 if (nd.specfl & SP_RBLT)
253 scalecolor(ctmp, 1.0-nd.trans);
254 else
255 scalecolor(ctmp, nd.rdiff);
256 multcolor(ctmp, nd.mcolor); /* modified by material color */
257 addcolor(r->rcol, ctmp); /* add to returned color */
258 }
259 if (nd.tdiff > FTINY) { /* ambient from other side */
260 flipsurface(r);
261 ambient(ctmp, r);
262 if (nd.specfl & SP_TBLT)
263 scalecolor(ctmp, nd.trans);
264 else
265 scalecolor(ctmp, nd.tdiff);
266 multcolor(ctmp, nd.mcolor); /* modified by color */
267 addcolor(r->rcol, ctmp);
268 flipsurface(r);
269 }
270 /* add direct component */
271 direct(r, diraniso, &nd);
272 }
273
274
275 static
276 getacoords(r, np) /* set up coordinate system */
277 RAY *r;
278 register ANISODAT *np;
279 {
280 register MFUNC *mf;
281 register int i;
282
283 mf = getfunc(np->mp, 3, 0x7, 1);
284 setfunc(np->mp, r);
285 errno = 0;
286 for (i = 0; i < 3; i++)
287 np->u[i] = evalue(mf->ep[i]);
288 if (errno) {
289 objerror(np->mp, WARNING, "compute error");
290 np->specfl |= SP_BADU;
291 return;
292 }
293 multv3(np->u, np->u, mf->f->xfm);
294 fcross(np->v, np->pnorm, np->u);
295 if (normalize(np->v) == 0.0) {
296 objerror(np->mp, WARNING, "illegal orientation vector");
297 np->specfl |= SP_BADU;
298 return;
299 }
300 fcross(np->u, np->v, np->pnorm);
301 }
302
303
304 static
305 agaussamp(r, np) /* sample anisotropic gaussian specular */
306 RAY *r;
307 register ANISODAT *np;
308 {
309 RAY sr;
310 FVECT h;
311 double rv[2];
312 double d, sinp, cosp;
313 register int i;
314 /* compute reflection */
315 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
316 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
317 dimlist[ndims++] = (int)np->mp;
318 d = urand(ilhash(dimlist,ndims)+samplendx);
319 multisamp(rv, 2, d);
320 d = 2.0*PI * rv[0];
321 cosp = np->u_alpha * cos(d);
322 sinp = np->v_alpha * sin(d);
323 d = sqrt(cosp*cosp + sinp*sinp);
324 cosp /= d;
325 sinp /= d;
326 rv[1] = 1.0 - specjitter*rv[1];
327 if (rv[1] <= FTINY)
328 d = 1.0;
329 else
330 d = sqrt(-log(rv[1]) /
331 (cosp*cosp/(np->u_alpha*np->u_alpha) +
332 sinp*sinp/(np->v_alpha*np->v_alpha)));
333 for (i = 0; i < 3; i++)
334 h[i] = np->pnorm[i] +
335 d*(cosp*np->u[i] + sinp*np->v[i]);
336 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
337 for (i = 0; i < 3; i++)
338 sr.rdir[i] = r->rdir[i] + d*h[i];
339 if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */
340 VCOPY(sr.rdir, np->vrefl); /* jitter no good */
341 rayvalue(&sr);
342 multcolor(sr.rcol, np->scolor);
343 addcolor(r->rcol, sr.rcol);
344 ndims--;
345 }
346 /* compute transmission */
347 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
348 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
349 dimlist[ndims++] = (int)np->mp;
350 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
351 multisamp(rv, 2, d);
352 d = 2.0*PI * rv[0];
353 cosp = cos(d);
354 sinp = sin(d);
355 rv[1] = 1.0 - specjitter*rv[1];
356 if (rv[1] <= FTINY)
357 d = 1.0;
358 else
359 d = sqrt(-log(rv[1]) /
360 (cosp*cosp*4./(np->u_alpha*np->u_alpha) +
361 sinp*sinp*4./(np->v_alpha*np->v_alpha)));
362 for (i = 0; i < 3; i++)
363 sr.rdir[i] = np->prdir[i] +
364 d*(cosp*np->u[i] + sinp*np->v[i]);
365 if (DOT(sr.rdir, r->ron) < -FTINY)
366 normalize(sr.rdir); /* OK, normalize */
367 else
368 VCOPY(sr.rdir, np->prdir); /* else no jitter */
369 rayvalue(&sr);
370 scalecolor(sr.rcol, np->tspec);
371 multcolor(sr.rcol, np->mcolor); /* modify by color */
372 addcolor(r->rcol, sr.rcol);
373 ndims--;
374 }
375 }