ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.1
Committed: Sat Jan 4 19:52:49 1992 UTC (32 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
Log Message:
Initial revision

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Shading functions for anisotropic materials.
9 */
10
11 #include "ray.h"
12
13 #include "otypes.h"
14
15 #include "func.h"
16
17 #include "random.h"
18
19 /*
20 * This anisotropic reflection model uses a variant on the
21 * exponential Gaussian used in normal.c.
22 * We orient the surface towards the incoming ray, so a single
23 * surface can be used to represent an infinitely thin object.
24 *
25 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
26 * 4+ ux uy uz funcfile [transform...]
27 * 0
28 * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
29 *
30 * Real arguments for MAT_TRANS2 are:
31 * 8 red grn blu rspec u-rough v-rough trans tspec
32 */
33
34 #define BSPEC(m) (6.0) /* specularity parameter b */
35
36 /* specularity flags */
37 #define SP_REFL 01 /* has reflected specular component */
38 #define SP_TRAN 02 /* has transmitted specular */
39 #define SP_PURE 010 /* purely specular (zero roughness) */
40 #define SP_BADU 020 /* bad u direction calculation */
41
42 typedef struct {
43 RAY *rp; /* ray pointer */
44 OBJREC *mp; /* material pointer */
45 short specfl; /* specularity flags, defined above */
46 COLOR mcolor; /* color of this material */
47 COLOR scolor; /* color of specular component */
48 FVECT prdir; /* vector in transmitted direction */
49 FVECT u, v; /* u and v vectors orienting anisotropy */
50 double u_alpha; /* u roughness */
51 double v_alpha; /* v roughness */
52 double rdiff, rspec; /* reflected specular, diffuse */
53 double trans; /* transmissivity */
54 double tdiff, tspec; /* transmitted specular, diffuse */
55 FVECT pnorm; /* perturbed surface normal */
56 double pdot; /* perturbed dot product */
57 } ANISODAT; /* anisotropic material data */
58
59
60 diraniso(cval, np, ldir, omega) /* compute source contribution */
61 COLOR cval; /* returned coefficient */
62 register ANISODAT *np; /* material data */
63 FVECT ldir; /* light source direction */
64 double omega; /* light source size */
65 {
66 double ldot;
67 double dtmp, dtmp2;
68 FVECT h;
69 double au2, av2;
70 COLOR ctmp;
71
72 setcolor(cval, 0.0, 0.0, 0.0);
73
74 ldot = DOT(np->pnorm, ldir);
75
76 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
77 return; /* wrong side */
78
79 if (ldot > FTINY && np->rdiff > FTINY) {
80 /*
81 * Compute and add diffuse reflected component to returned
82 * color. The diffuse reflected component will always be
83 * modified by the color of the material.
84 */
85 copycolor(ctmp, np->mcolor);
86 dtmp = ldot * omega * np->rdiff / PI;
87 scalecolor(ctmp, dtmp);
88 addcolor(cval, ctmp);
89 }
90 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE|SP_BADU)) == SP_REFL) {
91 /*
92 * Compute specular reflection coefficient using
93 * anisotropic gaussian distribution model.
94 */
95 /* roughness + source */
96 au2 = av2 = omega/(4.0*PI);
97 au2 += np->u_alpha * np->u_alpha;
98 av2 += np->v_alpha * np->v_alpha;
99 /* half vector */
100 h[0] = ldir[0] - np->rp->rdir[0];
101 h[1] = ldir[1] - np->rp->rdir[1];
102 h[2] = ldir[2] - np->rp->rdir[2];
103 normalize(h);
104 /* ellipse */
105 dtmp = DOT(np->u, h);
106 dtmp *= dtmp / au2;
107 dtmp2 = DOT(np->v, h);
108 dtmp2 *= dtmp2 / av2;
109 /* gaussian */
110 dtmp = (dtmp + dtmp2) / (1.0 + DOT(np->pnorm, h));
111 dtmp = exp(-2.0*dtmp) / (4.0*PI * sqrt(au2*av2));
112 /* worth using? */
113 if (dtmp > FTINY) {
114 copycolor(ctmp, np->scolor);
115 dtmp *= omega / np->pdot;
116 scalecolor(ctmp, dtmp);
117 addcolor(cval, ctmp);
118 }
119 }
120 if (ldot < -FTINY && np->tdiff > FTINY) {
121 /*
122 * Compute diffuse transmission.
123 */
124 copycolor(ctmp, np->mcolor);
125 dtmp = -ldot * omega * np->tdiff / PI;
126 scalecolor(ctmp, dtmp);
127 addcolor(cval, ctmp);
128 }
129 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE|SP_BADU)) == SP_TRAN) {
130 /*
131 * Compute specular transmission. Specular transmission
132 * is always modified by material color.
133 */
134 /* roughness + source */
135 /* gaussian */
136 dtmp = 0.0;
137 /* worth using? */
138 if (dtmp > FTINY) {
139 copycolor(ctmp, np->mcolor);
140 dtmp *= np->tspec * omega / np->pdot;
141 scalecolor(ctmp, dtmp);
142 addcolor(cval, ctmp);
143 }
144 }
145 }
146
147
148 m_aniso(m, r) /* shade ray that hit something anisotropic */
149 register OBJREC *m;
150 register RAY *r;
151 {
152 ANISODAT nd;
153 double transtest, transdist;
154 double dtmp;
155 COLOR ctmp;
156 register int i;
157 /* easy shadow test */
158 if (r->crtype & SHADOW && m->otype != MAT_TRANS2)
159 return;
160
161 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
162 objerror(m, USER, "bad number of real arguments");
163 nd.rp = r;
164 nd.mp = m;
165 /* get material color */
166 setcolor(nd.mcolor, m->oargs.farg[0],
167 m->oargs.farg[1],
168 m->oargs.farg[2]);
169 /* get roughness */
170 nd.specfl = 0;
171 nd.u_alpha = m->oargs.farg[4];
172 nd.v_alpha = m->oargs.farg[5];
173 if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY)
174 nd.specfl |= SP_PURE;
175 /* reorient if necessary */
176 if (r->rod < 0.0)
177 flipsurface(r);
178 /* get modifiers */
179 raytexture(r, m->omod);
180 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
181 if (nd.pdot < .001)
182 nd.pdot = .001; /* non-zero for diraniso() */
183 multcolor(nd.mcolor, r->pcol); /* modify material color */
184 transtest = 0;
185 /* get specular component */
186 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
187 nd.specfl |= SP_REFL;
188 /* compute specular color */
189 if (m->otype == MAT_METAL2)
190 copycolor(nd.scolor, nd.mcolor);
191 else
192 setcolor(nd.scolor, 1.0, 1.0, 1.0);
193 scalecolor(nd.scolor, nd.rspec);
194 /* improved model */
195 dtmp = exp(-BSPEC(m)*nd.pdot);
196 for (i = 0; i < 3; i++)
197 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
198 nd.rspec += (1.0-nd.rspec)*dtmp;
199
200 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
201 RAY lr;
202 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
203 for (i = 0; i < 3; i++)
204 lr.rdir[i] = r->rdir[i] +
205 2.0*nd.pdot*nd.pnorm[i];
206 rayvalue(&lr);
207 multcolor(lr.rcol, nd.scolor);
208 addcolor(r->rcol, lr.rcol);
209 }
210 }
211 }
212 /* compute transmission */
213 if (m->otype == MAT_TRANS) {
214 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
215 nd.tspec = nd.trans * m->oargs.farg[7];
216 nd.tdiff = nd.trans - nd.tspec;
217 if (nd.tspec > FTINY) {
218 nd.specfl |= SP_TRAN;
219 if (r->crtype & SHADOW ||
220 DOT(r->pert,r->pert) <= FTINY*FTINY) {
221 VCOPY(nd.prdir, r->rdir);
222 transtest = 2;
223 } else {
224 for (i = 0; i < 3; i++) /* perturb */
225 nd.prdir[i] = r->rdir[i] -
226 .75*r->pert[i];
227 normalize(nd.prdir);
228 }
229 }
230 } else
231 nd.tdiff = nd.tspec = nd.trans = 0.0;
232 /* transmitted ray */
233 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
234 RAY lr;
235 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
236 VCOPY(lr.rdir, nd.prdir);
237 rayvalue(&lr);
238 scalecolor(lr.rcol, nd.tspec);
239 multcolor(lr.rcol, nd.mcolor); /* modified by color */
240 addcolor(r->rcol, lr.rcol);
241 transtest *= bright(lr.rcol);
242 transdist = r->rot + lr.rt;
243 }
244 }
245
246 if (r->crtype & SHADOW) /* the rest is shadow */
247 return;
248 /* diffuse reflection */
249 nd.rdiff = 1.0 - nd.trans - nd.rspec;
250
251 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
252 return; /* 100% pure specular */
253
254 getacoords(r, &nd); /* set up coordinates */
255
256 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & (SP_PURE|SP_BADU)))
257 agaussamp(r, &nd);
258
259 if (nd.rdiff > FTINY) { /* ambient from this side */
260 ambient(ctmp, r);
261 scalecolor(ctmp, nd.rdiff);
262 multcolor(ctmp, nd.mcolor); /* modified by material color */
263 addcolor(r->rcol, ctmp); /* add to returned color */
264 }
265 if (nd.tdiff > FTINY) { /* ambient from other side */
266 flipsurface(r);
267 ambient(ctmp, r);
268 scalecolor(ctmp, nd.tdiff);
269 multcolor(ctmp, nd.mcolor); /* modified by color */
270 addcolor(r->rcol, ctmp);
271 flipsurface(r);
272 }
273 /* add direct component */
274 direct(r, diraniso, &nd);
275 /* check distance */
276 if (transtest > bright(r->rcol))
277 r->rt = transdist;
278 }
279
280
281 static
282 getacoords(r, np) /* set up coordinate system */
283 RAY *r;
284 register ANISODAT *np;
285 {
286 register MFUNC *mf;
287 register int i;
288
289 mf = getfunc(np->mp, 3, 0x7, 1);
290 setfunc(np->mp, r);
291 errno = 0;
292 for (i = 0; i < 3; i++)
293 np->u[i] = evalue(mf->ep[i]);
294 if (errno) {
295 objerror(np->mp, WARNING, "compute error");
296 np->specfl |= SP_BADU;
297 return;
298 }
299 multv3(np->u, np->u, mf->f->xfm);
300 fcross(np->v, np->pnorm, np->u);
301 if (normalize(np->v) == 0.0) {
302 objerror(np->mp, WARNING, "illegal orientation vector");
303 np->specfl |= SP_BADU;
304 return;
305 }
306 fcross(np->u, np->v, np->pnorm);
307 }
308
309
310 static
311 agaussamp(r, np) /* sample anisotropic gaussian specular */
312 RAY *r;
313 register ANISODAT *np;
314 {
315 RAY sr;
316 FVECT h;
317 double rv[2];
318 double d, sinp, cosp;
319 int confuse;
320 register int i;
321 /* compute reflection */
322 if (np->specfl & SP_REFL &&
323 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
324 confuse = 0;
325 dimlist[ndims++] = (int)np->mp;
326 refagain:
327 dimlist[ndims] = confuse += 3601;
328 d = urand(ilhash(dimlist,ndims+1)+samplendx);
329 multisamp(rv, 2, d);
330 d = 2.0*PI * rv[0];
331 cosp = np->u_alpha * cos(d);
332 sinp = np->v_alpha * sin(d);
333 d = sqrt(cosp*cosp + sinp*sinp);
334 cosp /= d;
335 sinp /= d;
336 if (rv[1] <= FTINY)
337 d = 1.0;
338 else
339 d = sqrt( -log(rv[1]) /
340 (cosp*cosp/(np->u_alpha*np->u_alpha) +
341 sinp*sinp/(np->v_alpha*np->v_alpha)) );
342 for (i = 0; i < 3; i++)
343 h[i] = np->pnorm[i] +
344 d*(cosp*np->u[i] + sinp*np->v[i]);
345 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
346 for (i = 0; i < 3; i++)
347 sr.rdir[i] = r->rdir[i] + d*h[i];
348 if (DOT(sr.rdir, r->ron) <= FTINY) /* oops! */
349 goto refagain;
350 rayvalue(&sr);
351 multcolor(sr.rcol, np->scolor);
352 addcolor(r->rcol, sr.rcol);
353 ndims--;
354 }
355 /* compute transmission */
356 }