| 39 |
|
/* specularity flags */ |
| 40 |
|
#define SP_REFL 01 /* has reflected specular component */ |
| 41 |
|
#define SP_TRAN 02 /* has transmitted specular */ |
| 42 |
< |
#define SP_PURE 010 /* purely specular (zero roughness) */ |
| 43 |
< |
#define SP_FLAT 020 /* reflecting surface is flat */ |
| 44 |
< |
#define SP_RBLT 040 /* reflection below sample threshold */ |
| 45 |
< |
#define SP_TBLT 0100 /* transmission below threshold */ |
| 46 |
< |
#define SP_BADU 0200 /* bad u direction calculation */ |
| 42 |
> |
#define SP_FLAT 04 /* reflecting surface is flat */ |
| 43 |
> |
#define SP_RBLT 010 /* reflection below sample threshold */ |
| 44 |
> |
#define SP_TBLT 020 /* transmission below threshold */ |
| 45 |
> |
#define SP_BADU 040 /* bad u direction calculation */ |
| 46 |
|
|
| 47 |
|
typedef struct { |
| 48 |
|
OBJREC *mp; /* material pointer */ |
| 93 |
|
scalecolor(ctmp, dtmp); |
| 94 |
|
addcolor(cval, ctmp); |
| 95 |
|
} |
| 96 |
< |
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE|SP_BADU)) == SP_REFL) { |
| 96 |
> |
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) { |
| 97 |
|
/* |
| 98 |
|
* Compute specular reflection coefficient using |
| 99 |
|
* anisotropic gaussian distribution model. |
| 135 |
|
scalecolor(ctmp, dtmp); |
| 136 |
|
addcolor(cval, ctmp); |
| 137 |
|
} |
| 138 |
< |
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE|SP_BADU)) == SP_TRAN) { |
| 138 |
> |
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) { |
| 139 |
|
/* |
| 140 |
|
* Compute specular transmission. Specular transmission |
| 141 |
|
* is always modified by material color. |
| 159 |
|
register RAY *r; |
| 160 |
|
{ |
| 161 |
|
ANISODAT nd; |
| 163 |
– |
double transtest, transdist; |
| 162 |
|
double dtmp; |
| 163 |
|
COLOR ctmp; |
| 164 |
|
register int i; |
| 165 |
|
/* easy shadow test */ |
| 166 |
< |
if (r->crtype & SHADOW && m->otype != MAT_TRANS2) |
| 166 |
> |
if (r->crtype & SHADOW) |
| 167 |
|
return; |
| 168 |
|
|
| 169 |
|
if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6)) |
| 178 |
|
nd.specfl = 0; |
| 179 |
|
nd.u_alpha = m->oargs.farg[4]; |
| 180 |
|
nd.v_alpha = m->oargs.farg[5]; |
| 181 |
< |
if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY) |
| 182 |
< |
nd.specfl |= SP_PURE; |
| 181 |
> |
if (nd.u_alpha < 1e-6 || nd.v_alpha <= 1e-6) |
| 182 |
> |
objerror(m, USER, "roughness too small"); |
| 183 |
|
/* reorient if necessary */ |
| 184 |
|
if (r->rod < 0.0) |
| 185 |
|
flipsurface(r); |
| 189 |
|
if (nd.pdot < .001) |
| 190 |
|
nd.pdot = .001; /* non-zero for diraniso() */ |
| 191 |
|
multcolor(nd.mcolor, r->pcol); /* modify material color */ |
| 194 |
– |
transtest = 0; |
| 192 |
|
/* get specular component */ |
| 193 |
|
if ((nd.rspec = m->oargs.farg[3]) > FTINY) { |
| 194 |
|
nd.specfl |= SP_REFL; |
| 214 |
|
if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */ |
| 215 |
|
for (i = 0; i < 3; i++) /* safety measure */ |
| 216 |
|
nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; |
| 220 |
– |
|
| 221 |
– |
if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) { |
| 222 |
– |
RAY lr; |
| 223 |
– |
if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) { |
| 224 |
– |
VCOPY(lr.rdir, nd.vrefl); |
| 225 |
– |
rayvalue(&lr); |
| 226 |
– |
multcolor(lr.rcol, nd.scolor); |
| 227 |
– |
addcolor(r->rcol, lr.rcol); |
| 228 |
– |
} |
| 229 |
– |
} |
| 217 |
|
} |
| 218 |
|
/* compute transmission */ |
| 219 |
|
if (m->otype == MAT_TRANS) { |
| 228 |
|
specthresh + |
| 229 |
|
(.05 - .1*frandom()) > nd.tspec))) |
| 230 |
|
nd.specfl |= SP_TBLT; |
| 231 |
< |
if (r->crtype & SHADOW || |
| 245 |
< |
DOT(r->pert,r->pert) <= FTINY*FTINY) { |
| 231 |
> |
if (DOT(r->pert,r->pert) <= FTINY*FTINY) { |
| 232 |
|
VCOPY(nd.prdir, r->rdir); |
| 247 |
– |
transtest = 2; |
| 233 |
|
} else { |
| 234 |
|
for (i = 0; i < 3; i++) /* perturb */ |
| 235 |
|
nd.prdir[i] = r->rdir[i] - |
| 242 |
|
} |
| 243 |
|
} else |
| 244 |
|
nd.tdiff = nd.tspec = nd.trans = 0.0; |
| 260 |
– |
/* transmitted ray */ |
| 261 |
– |
if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) { |
| 262 |
– |
RAY lr; |
| 263 |
– |
if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) { |
| 264 |
– |
VCOPY(lr.rdir, nd.prdir); |
| 265 |
– |
rayvalue(&lr); |
| 266 |
– |
scalecolor(lr.rcol, nd.tspec); |
| 267 |
– |
multcolor(lr.rcol, nd.mcolor); /* modified by color */ |
| 268 |
– |
addcolor(r->rcol, lr.rcol); |
| 269 |
– |
transtest *= bright(lr.rcol); |
| 270 |
– |
transdist = r->rot + lr.rt; |
| 271 |
– |
} |
| 272 |
– |
} |
| 245 |
|
|
| 274 |
– |
if (r->crtype & SHADOW) /* the rest is shadow */ |
| 275 |
– |
return; |
| 246 |
|
/* diffuse reflection */ |
| 247 |
|
nd.rdiff = 1.0 - nd.trans - nd.rspec; |
| 248 |
|
|
| 279 |
– |
if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) |
| 280 |
– |
return; /* 100% pure specular */ |
| 281 |
– |
|
| 249 |
|
if (r->ro->otype == OBJ_FACE || r->ro->otype == OBJ_RING) |
| 250 |
|
nd.specfl |= SP_FLAT; |
| 251 |
|
|
| 252 |
|
getacoords(r, &nd); /* set up coordinates */ |
| 253 |
|
|
| 254 |
< |
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & (SP_PURE|SP_BADU))) |
| 254 |
> |
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU)) |
| 255 |
|
agaussamp(r, &nd); |
| 256 |
|
|
| 257 |
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
| 276 |
|
} |
| 277 |
|
/* add direct component */ |
| 278 |
|
direct(r, diraniso, &nd); |
| 312 |
– |
/* check distance */ |
| 313 |
– |
if (transtest > bright(r->rcol)) |
| 314 |
– |
r->rt = transdist; |
| 279 |
|
} |
| 280 |
|
|
| 281 |
|
|
| 374 |
|
else |
| 375 |
|
VCOPY(sr.rdir, np->prdir); /* else no jitter */ |
| 376 |
|
rayvalue(&sr); |
| 377 |
< |
multcolor(sr.rcol, np->scolor); |
| 377 |
> |
scalecolor(sr.rcol, np->tspec); |
| 378 |
> |
multcolor(sr.rcol, np->mcolor); /* modify by color */ |
| 379 |
|
addcolor(r->rcol, sr.rcol); |
| 380 |
|
ndims--; |
| 381 |
|
} |