| 1 |
|
#ifndef lint |
| 2 |
< |
static const char RCSid[] = "$Id$"; |
| 2 |
> |
static const char RCSid[] = "$Id$"; |
| 3 |
|
#endif |
| 4 |
|
/* |
| 5 |
|
* Shading functions for anisotropic materials. |
| 8 |
|
#include "copyright.h" |
| 9 |
|
|
| 10 |
|
#include "ray.h" |
| 11 |
< |
|
| 11 |
> |
#include "ambient.h" |
| 12 |
|
#include "otypes.h" |
| 13 |
< |
|
| 13 |
> |
#include "rtotypes.h" |
| 14 |
> |
#include "source.h" |
| 15 |
|
#include "func.h" |
| 15 |
– |
|
| 16 |
|
#include "random.h" |
| 17 |
|
|
| 18 |
|
#ifndef MAXITER |
| 60 |
|
double pdot; /* perturbed dot product */ |
| 61 |
|
} ANISODAT; /* anisotropic material data */ |
| 62 |
|
|
| 63 |
< |
static void getacoords(); |
| 64 |
< |
static void agaussamp(); |
| 63 |
> |
static srcdirf_t diraniso; |
| 64 |
> |
static void getacoords(RAY *r, ANISODAT *np); |
| 65 |
> |
static void agaussamp(RAY *r, ANISODAT *np); |
| 66 |
|
|
| 67 |
|
|
| 68 |
|
static void |
| 69 |
< |
diraniso(cval, np, ldir, omega) /* compute source contribution */ |
| 70 |
< |
COLOR cval; /* returned coefficient */ |
| 71 |
< |
register ANISODAT *np; /* material data */ |
| 72 |
< |
FVECT ldir; /* light source direction */ |
| 73 |
< |
double omega; /* light source size */ |
| 69 |
> |
diraniso( /* compute source contribution */ |
| 70 |
> |
COLOR cval, /* returned coefficient */ |
| 71 |
> |
void *nnp, /* material data */ |
| 72 |
> |
FVECT ldir, /* light source direction */ |
| 73 |
> |
double omega /* light source size */ |
| 74 |
> |
) |
| 75 |
|
{ |
| 76 |
+ |
register ANISODAT *np = nnp; |
| 77 |
|
double ldot; |
| 78 |
|
double dtmp, dtmp1, dtmp2; |
| 79 |
|
FVECT h; |
| 94 |
|
* modified by the color of the material. |
| 95 |
|
*/ |
| 96 |
|
copycolor(ctmp, np->mcolor); |
| 97 |
< |
dtmp = ldot * omega * np->rdiff / PI; |
| 97 |
> |
dtmp = ldot * omega * np->rdiff * (1.0/PI); |
| 98 |
|
scalecolor(ctmp, dtmp); |
| 99 |
|
addcolor(cval, ctmp); |
| 100 |
|
} |
| 101 |
|
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) { |
| 102 |
|
/* |
| 103 |
|
* Compute specular reflection coefficient using |
| 104 |
< |
* anisotropic gaussian distribution model. |
| 104 |
> |
* anisotropic Gaussian distribution model. |
| 105 |
|
*/ |
| 106 |
|
/* add source width if flat */ |
| 107 |
|
if (np->specfl & SP_FLAT) |
| 108 |
< |
au2 = av2 = omega/(4.0*PI); |
| 108 |
> |
au2 = av2 = omega * (0.25/PI); |
| 109 |
|
else |
| 110 |
|
au2 = av2 = 0.0; |
| 111 |
|
au2 += np->u_alpha*np->u_alpha; |
| 119 |
|
dtmp1 *= dtmp1 / au2; |
| 120 |
|
dtmp2 = DOT(np->v, h); |
| 121 |
|
dtmp2 *= dtmp2 / av2; |
| 122 |
< |
/* gaussian */ |
| 122 |
> |
/* new W-G-M-D model */ |
| 123 |
|
dtmp = DOT(np->pnorm, h); |
| 124 |
< |
dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp); |
| 125 |
< |
dtmp = exp(-dtmp) * (0.25/PI) |
| 126 |
< |
* sqrt(ldot/(np->pdot*au2*av2)); |
| 124 |
> |
dtmp *= dtmp; |
| 125 |
> |
dtmp1 = (dtmp1 + dtmp2) / dtmp; |
| 126 |
> |
dtmp = exp(-dtmp1) * DOT(h,h) / |
| 127 |
> |
(PI * dtmp*dtmp * sqrt(au2*av2)); |
| 128 |
|
/* worth using? */ |
| 129 |
|
if (dtmp > FTINY) { |
| 130 |
|
copycolor(ctmp, np->scolor); |
| 131 |
< |
dtmp *= omega; |
| 131 |
> |
dtmp *= ldot * omega; |
| 132 |
|
scalecolor(ctmp, dtmp); |
| 133 |
|
addcolor(cval, ctmp); |
| 134 |
|
} |
| 138 |
|
* Compute diffuse transmission. |
| 139 |
|
*/ |
| 140 |
|
copycolor(ctmp, np->mcolor); |
| 141 |
< |
dtmp = -ldot * omega * np->tdiff / PI; |
| 141 |
> |
dtmp = -ldot * omega * np->tdiff * (1.0/PI); |
| 142 |
|
scalecolor(ctmp, dtmp); |
| 143 |
|
addcolor(cval, ctmp); |
| 144 |
|
} |
| 148 |
|
* is always modified by material color. |
| 149 |
|
*/ |
| 150 |
|
/* roughness + source */ |
| 151 |
< |
au2 = av2 = omega / PI; |
| 151 |
> |
au2 = av2 = omega * (1.0/PI); |
| 152 |
|
au2 += np->u_alpha*np->u_alpha; |
| 153 |
|
av2 += np->v_alpha*np->v_alpha; |
| 154 |
|
/* "half vector" */ |
| 168 |
|
} |
| 169 |
|
} else |
| 170 |
|
dtmp = 0.0; |
| 171 |
< |
/* gaussian */ |
| 172 |
< |
dtmp = exp(-dtmp) * (1.0/PI) |
| 169 |
< |
* sqrt(-ldot/(np->pdot*au2*av2)); |
| 171 |
> |
/* Gaussian */ |
| 172 |
> |
dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2)); |
| 173 |
|
/* worth using? */ |
| 174 |
|
if (dtmp > FTINY) { |
| 175 |
|
copycolor(ctmp, np->mcolor); |
| 181 |
|
} |
| 182 |
|
|
| 183 |
|
|
| 184 |
< |
int |
| 185 |
< |
m_aniso(m, r) /* shade ray that hit something anisotropic */ |
| 186 |
< |
register OBJREC *m; |
| 187 |
< |
register RAY *r; |
| 184 |
> |
extern int |
| 185 |
> |
m_aniso( /* shade ray that hit something anisotropic */ |
| 186 |
> |
register OBJREC *m, |
| 187 |
> |
register RAY *r |
| 188 |
> |
) |
| 189 |
|
{ |
| 190 |
|
ANISODAT nd; |
| 191 |
|
COLOR ctmp; |
| 196 |
|
|
| 197 |
|
if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6)) |
| 198 |
|
objerror(m, USER, "bad number of real arguments"); |
| 199 |
+ |
/* check for back side */ |
| 200 |
+ |
if (r->rod < 0.0) { |
| 201 |
+ |
if (!backvis && m->otype != MAT_TRANS2) { |
| 202 |
+ |
raytrans(r); |
| 203 |
+ |
return(1); |
| 204 |
+ |
} |
| 205 |
+ |
raytexture(r, m->omod); |
| 206 |
+ |
flipsurface(r); /* reorient if backvis */ |
| 207 |
+ |
} else |
| 208 |
+ |
raytexture(r, m->omod); |
| 209 |
+ |
/* get material color */ |
| 210 |
|
nd.mp = m; |
| 211 |
|
nd.rp = r; |
| 197 |
– |
/* get material color */ |
| 212 |
|
setcolor(nd.mcolor, m->oargs.farg[0], |
| 213 |
|
m->oargs.farg[1], |
| 214 |
|
m->oargs.farg[2]); |
| 216 |
|
nd.specfl = 0; |
| 217 |
|
nd.u_alpha = m->oargs.farg[4]; |
| 218 |
|
nd.v_alpha = m->oargs.farg[5]; |
| 219 |
< |
if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY) |
| 219 |
> |
if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY) |
| 220 |
|
objerror(m, USER, "roughness too small"); |
| 221 |
< |
/* check for back side */ |
| 208 |
< |
if (r->rod < 0.0) { |
| 209 |
< |
if (!backvis && m->otype != MAT_TRANS2) { |
| 210 |
< |
raytrans(r); |
| 211 |
< |
return(1); |
| 212 |
< |
} |
| 213 |
< |
flipsurface(r); /* reorient if backvis */ |
| 214 |
< |
} |
| 215 |
< |
/* get modifiers */ |
| 216 |
< |
raytexture(r, m->omod); |
| 221 |
> |
|
| 222 |
|
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ |
| 223 |
|
if (nd.pdot < .001) |
| 224 |
|
nd.pdot = .001; /* non-zero for diraniso() */ |
| 278 |
|
agaussamp(r, &nd); |
| 279 |
|
|
| 280 |
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
| 281 |
< |
ambient(ctmp, r, nd.pnorm); |
| 281 |
> |
copycolor(ctmp, nd.mcolor); /* modified by material color */ |
| 282 |
|
if (nd.specfl & SP_RBLT) |
| 283 |
|
scalecolor(ctmp, 1.0-nd.trans); |
| 284 |
|
else |
| 285 |
|
scalecolor(ctmp, nd.rdiff); |
| 286 |
< |
multcolor(ctmp, nd.mcolor); /* modified by material color */ |
| 286 |
> |
multambient(ctmp, r, nd.pnorm); |
| 287 |
|
addcolor(r->rcol, ctmp); /* add to returned color */ |
| 288 |
|
} |
| 289 |
|
if (nd.tdiff > FTINY) { /* ambient from other side */ |
| 293 |
|
bnorm[0] = -nd.pnorm[0]; |
| 294 |
|
bnorm[1] = -nd.pnorm[1]; |
| 295 |
|
bnorm[2] = -nd.pnorm[2]; |
| 296 |
< |
ambient(ctmp, r, bnorm); |
| 296 |
> |
copycolor(ctmp, nd.mcolor); /* modified by color */ |
| 297 |
|
if (nd.specfl & SP_TBLT) |
| 298 |
|
scalecolor(ctmp, nd.trans); |
| 299 |
|
else |
| 300 |
|
scalecolor(ctmp, nd.tdiff); |
| 301 |
< |
multcolor(ctmp, nd.mcolor); /* modified by color */ |
| 301 |
> |
multambient(ctmp, r, bnorm); |
| 302 |
|
addcolor(r->rcol, ctmp); |
| 303 |
|
flipsurface(r); |
| 304 |
|
} |
| 310 |
|
|
| 311 |
|
|
| 312 |
|
static void |
| 313 |
< |
getacoords(r, np) /* set up coordinate system */ |
| 314 |
< |
RAY *r; |
| 315 |
< |
register ANISODAT *np; |
| 313 |
> |
getacoords( /* set up coordinate system */ |
| 314 |
> |
RAY *r, |
| 315 |
> |
register ANISODAT *np |
| 316 |
> |
) |
| 317 |
|
{ |
| 318 |
|
register MFUNC *mf; |
| 319 |
|
register int i; |
| 323 |
|
errno = 0; |
| 324 |
|
for (i = 0; i < 3; i++) |
| 325 |
|
np->u[i] = evalue(mf->ep[i]); |
| 326 |
< |
if (errno) { |
| 326 |
> |
if (errno == EDOM || errno == ERANGE) { |
| 327 |
|
objerror(np->mp, WARNING, "compute error"); |
| 328 |
|
np->specfl |= SP_BADU; |
| 329 |
|
return; |
| 341 |
|
|
| 342 |
|
|
| 343 |
|
static void |
| 344 |
< |
agaussamp(r, np) /* sample anisotropic gaussian specular */ |
| 345 |
< |
RAY *r; |
| 346 |
< |
register ANISODAT *np; |
| 344 |
> |
agaussamp( /* sample anisotropic Gaussian specular */ |
| 345 |
> |
RAY *r, |
| 346 |
> |
register ANISODAT *np |
| 347 |
> |
) |
| 348 |
|
{ |
| 349 |
|
RAY sr; |
| 350 |
|
FVECT h; |
| 354 |
|
register int i; |
| 355 |
|
/* compute reflection */ |
| 356 |
|
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
| 357 |
< |
rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { |
| 357 |
> |
rayorigin(&sr, SPECULAR, r, np->scolor) == 0) { |
| 358 |
|
dimlist[ndims++] = (int)np->mp; |
| 359 |
|
for (niter = 0; niter < MAXITER; niter++) { |
| 360 |
|
if (niter) |
| 382 |
|
for (i = 0; i < 3; i++) |
| 383 |
|
sr.rdir[i] = r->rdir[i] + d*h[i]; |
| 384 |
|
if (DOT(sr.rdir, r->ron) > FTINY) { |
| 385 |
+ |
checknorm(sr.rdir); |
| 386 |
|
rayvalue(&sr); |
| 387 |
< |
multcolor(sr.rcol, np->scolor); |
| 387 |
> |
multcolor(sr.rcol, sr.rcoef); |
| 388 |
|
addcolor(r->rcol, sr.rcol); |
| 389 |
|
break; |
| 390 |
|
} |
| 392 |
|
ndims--; |
| 393 |
|
} |
| 394 |
|
/* compute transmission */ |
| 395 |
+ |
copycolor(sr.rcoef, np->mcolor); /* modify by material color */ |
| 396 |
+ |
scalecolor(sr.rcoef, np->tspec); |
| 397 |
|
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
| 398 |
< |
rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { |
| 398 |
> |
rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) { |
| 399 |
|
dimlist[ndims++] = (int)np->mp; |
| 400 |
|
for (niter = 0; niter < MAXITER; niter++) { |
| 401 |
|
if (niter) |
| 422 |
|
if (DOT(sr.rdir, r->ron) < -FTINY) { |
| 423 |
|
normalize(sr.rdir); /* OK, normalize */ |
| 424 |
|
rayvalue(&sr); |
| 425 |
< |
scalecolor(sr.rcol, np->tspec); |
| 416 |
< |
multcolor(sr.rcol, np->mcolor); /* modify */ |
| 425 |
> |
multcolor(sr.rcol, sr.rcoef); |
| 426 |
|
addcolor(r->rcol, sr.rcol); |
| 427 |
|
break; |
| 428 |
|
} |