| 1 |
< |
/* Copyright (c) 1992 Regents of the University of California */ |
| 1 |
> |
/* Copyright (c) 1998 Silicon Graphics, Inc. */ |
| 2 |
|
|
| 3 |
|
#ifndef lint |
| 4 |
< |
static char SCCSid[] = "$SunId$ LBL"; |
| 4 |
> |
static char SCCSid[] = "$SunId$ SGI"; |
| 5 |
|
#endif |
| 6 |
|
|
| 7 |
|
/* |
| 16 |
|
|
| 17 |
|
#include "random.h" |
| 18 |
|
|
| 19 |
+ |
extern double specthresh; /* specular sampling threshold */ |
| 20 |
+ |
extern double specjitter; /* specular sampling jitter */ |
| 21 |
+ |
|
| 22 |
+ |
extern int backvis; /* back faces visible? */ |
| 23 |
+ |
|
| 24 |
+ |
#ifndef MAXITER |
| 25 |
+ |
#define MAXITER 10 /* maximum # specular ray attempts */ |
| 26 |
+ |
#endif |
| 27 |
+ |
|
| 28 |
+ |
static agaussamp(), getacoords(); |
| 29 |
+ |
|
| 30 |
|
/* |
| 31 |
< |
* This anisotropic reflection model uses a variant on the |
| 32 |
< |
* exponential Gaussian used in normal.c. |
| 31 |
> |
* This routine implements the anisotropic Gaussian |
| 32 |
> |
* model described by Ward in Siggraph `92 article. |
| 33 |
|
* We orient the surface towards the incoming ray, so a single |
| 34 |
|
* surface can be used to represent an infinitely thin object. |
| 35 |
|
* |
| 42 |
|
* 8 red grn blu rspec u-rough v-rough trans tspec |
| 43 |
|
*/ |
| 44 |
|
|
| 34 |
– |
#define BSPEC(m) (6.0) /* specularity parameter b */ |
| 35 |
– |
|
| 45 |
|
/* specularity flags */ |
| 46 |
|
#define SP_REFL 01 /* has reflected specular component */ |
| 47 |
|
#define SP_TRAN 02 /* has transmitted specular */ |
| 48 |
< |
#define SP_PURE 010 /* purely specular (zero roughness) */ |
| 49 |
< |
#define SP_BADU 020 /* bad u direction calculation */ |
| 50 |
< |
#define SP_FLAT 040 /* reflecting surface is flat */ |
| 48 |
> |
#define SP_FLAT 04 /* reflecting surface is flat */ |
| 49 |
> |
#define SP_RBLT 010 /* reflection below sample threshold */ |
| 50 |
> |
#define SP_TBLT 020 /* transmission below threshold */ |
| 51 |
> |
#define SP_BADU 040 /* bad u direction calculation */ |
| 52 |
|
|
| 53 |
|
typedef struct { |
| 54 |
|
OBJREC *mp; /* material pointer */ |
| 56 |
|
short specfl; /* specularity flags, defined above */ |
| 57 |
|
COLOR mcolor; /* color of this material */ |
| 58 |
|
COLOR scolor; /* color of specular component */ |
| 59 |
+ |
FVECT vrefl; /* vector in reflected direction */ |
| 60 |
|
FVECT prdir; /* vector in transmitted direction */ |
| 61 |
|
FVECT u, v; /* u and v vectors orienting anisotropy */ |
| 62 |
|
double u_alpha; /* u roughness */ |
| 76 |
|
double omega; /* light source size */ |
| 77 |
|
{ |
| 78 |
|
double ldot; |
| 79 |
< |
double dtmp, dtmp2; |
| 79 |
> |
double dtmp, dtmp1, dtmp2; |
| 80 |
|
FVECT h; |
| 81 |
|
double au2, av2; |
| 82 |
|
COLOR ctmp; |
| 99 |
|
scalecolor(ctmp, dtmp); |
| 100 |
|
addcolor(cval, ctmp); |
| 101 |
|
} |
| 102 |
< |
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE|SP_BADU)) == SP_REFL) { |
| 102 |
> |
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) { |
| 103 |
|
/* |
| 104 |
|
* Compute specular reflection coefficient using |
| 105 |
|
* anisotropic gaussian distribution model. |
| 109 |
|
au2 = av2 = omega/(4.0*PI); |
| 110 |
|
else |
| 111 |
|
au2 = av2 = 0.0; |
| 112 |
< |
au2 += np->u_alpha * np->u_alpha; |
| 113 |
< |
av2 += np->v_alpha * np->v_alpha; |
| 112 |
> |
au2 += np->u_alpha*np->u_alpha; |
| 113 |
> |
av2 += np->v_alpha*np->v_alpha; |
| 114 |
|
/* half vector */ |
| 115 |
|
h[0] = ldir[0] - np->rp->rdir[0]; |
| 116 |
|
h[1] = ldir[1] - np->rp->rdir[1]; |
| 117 |
|
h[2] = ldir[2] - np->rp->rdir[2]; |
| 107 |
– |
normalize(h); |
| 118 |
|
/* ellipse */ |
| 119 |
< |
dtmp = DOT(np->u, h); |
| 120 |
< |
dtmp *= dtmp / au2; |
| 119 |
> |
dtmp1 = DOT(np->u, h); |
| 120 |
> |
dtmp1 *= dtmp1 / au2; |
| 121 |
|
dtmp2 = DOT(np->v, h); |
| 122 |
|
dtmp2 *= dtmp2 / av2; |
| 123 |
|
/* gaussian */ |
| 124 |
< |
dtmp = (dtmp + dtmp2) / (1.0 + DOT(np->pnorm, h)); |
| 125 |
< |
dtmp = exp(-2.0*dtmp) / (4.0*PI * sqrt(au2*av2)); |
| 124 |
> |
dtmp = DOT(np->pnorm, h); |
| 125 |
> |
dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp); |
| 126 |
> |
dtmp = exp(-dtmp) * (0.25/PI) |
| 127 |
> |
* sqrt(ldot/(np->pdot*au2*av2)); |
| 128 |
|
/* worth using? */ |
| 129 |
|
if (dtmp > FTINY) { |
| 130 |
|
copycolor(ctmp, np->scolor); |
| 131 |
< |
dtmp *= omega / np->pdot; |
| 131 |
> |
dtmp *= omega; |
| 132 |
|
scalecolor(ctmp, dtmp); |
| 133 |
|
addcolor(cval, ctmp); |
| 134 |
|
} |
| 142 |
|
scalecolor(ctmp, dtmp); |
| 143 |
|
addcolor(cval, ctmp); |
| 144 |
|
} |
| 145 |
< |
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE|SP_BADU)) == SP_TRAN) { |
| 145 |
> |
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) { |
| 146 |
|
/* |
| 147 |
|
* Compute specular transmission. Specular transmission |
| 148 |
|
* is always modified by material color. |
| 149 |
|
*/ |
| 150 |
|
/* roughness + source */ |
| 151 |
+ |
au2 = av2 = omega / PI; |
| 152 |
+ |
au2 += np->u_alpha*np->u_alpha; |
| 153 |
+ |
av2 += np->v_alpha*np->v_alpha; |
| 154 |
+ |
/* "half vector" */ |
| 155 |
+ |
h[0] = ldir[0] - np->prdir[0]; |
| 156 |
+ |
h[1] = ldir[1] - np->prdir[1]; |
| 157 |
+ |
h[2] = ldir[2] - np->prdir[2]; |
| 158 |
+ |
dtmp = DOT(h,h); |
| 159 |
+ |
if (dtmp > FTINY*FTINY) { |
| 160 |
+ |
dtmp1 = DOT(h,np->pnorm); |
| 161 |
+ |
dtmp = 1.0 - dtmp1*dtmp1/dtmp; |
| 162 |
+ |
if (dtmp > FTINY*FTINY) { |
| 163 |
+ |
dtmp1 = DOT(h,np->u); |
| 164 |
+ |
dtmp1 *= dtmp1 / au2; |
| 165 |
+ |
dtmp2 = DOT(h,np->v); |
| 166 |
+ |
dtmp2 *= dtmp2 / av2; |
| 167 |
+ |
dtmp = (dtmp1 + dtmp2) / dtmp; |
| 168 |
+ |
} |
| 169 |
+ |
} else |
| 170 |
+ |
dtmp = 0.0; |
| 171 |
|
/* gaussian */ |
| 172 |
< |
dtmp = 0.0; |
| 172 |
> |
dtmp = exp(-dtmp) * (1.0/PI) |
| 173 |
> |
* sqrt(-ldot/(np->pdot*au2*av2)); |
| 174 |
|
/* worth using? */ |
| 175 |
|
if (dtmp > FTINY) { |
| 176 |
|
copycolor(ctmp, np->mcolor); |
| 177 |
< |
dtmp *= np->tspec * omega / np->pdot; |
| 177 |
> |
dtmp *= np->tspec * omega; |
| 178 |
|
scalecolor(ctmp, dtmp); |
| 179 |
|
addcolor(cval, ctmp); |
| 180 |
|
} |
| 187 |
|
register RAY *r; |
| 188 |
|
{ |
| 189 |
|
ANISODAT nd; |
| 157 |
– |
double transtest, transdist; |
| 158 |
– |
double dtmp; |
| 190 |
|
COLOR ctmp; |
| 191 |
|
register int i; |
| 192 |
|
/* easy shadow test */ |
| 193 |
< |
if (r->crtype & SHADOW && m->otype != MAT_TRANS2) |
| 194 |
< |
return; |
| 193 |
> |
if (r->crtype & SHADOW) |
| 194 |
> |
return(1); |
| 195 |
|
|
| 196 |
|
if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6)) |
| 197 |
|
objerror(m, USER, "bad number of real arguments"); |
| 205 |
|
nd.specfl = 0; |
| 206 |
|
nd.u_alpha = m->oargs.farg[4]; |
| 207 |
|
nd.v_alpha = m->oargs.farg[5]; |
| 208 |
< |
if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY) |
| 209 |
< |
nd.specfl |= SP_PURE; |
| 210 |
< |
/* reorient if necessary */ |
| 211 |
< |
if (r->rod < 0.0) |
| 212 |
< |
flipsurface(r); |
| 208 |
> |
if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY) |
| 209 |
> |
objerror(m, USER, "roughness too small"); |
| 210 |
> |
/* check for back side */ |
| 211 |
> |
if (r->rod < 0.0) { |
| 212 |
> |
if (!backvis && m->otype != MAT_TRANS2) { |
| 213 |
> |
raytrans(r); |
| 214 |
> |
return(1); |
| 215 |
> |
} |
| 216 |
> |
flipsurface(r); /* reorient if backvis */ |
| 217 |
> |
} |
| 218 |
|
/* get modifiers */ |
| 219 |
|
raytexture(r, m->omod); |
| 220 |
|
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ |
| 221 |
|
if (nd.pdot < .001) |
| 222 |
|
nd.pdot = .001; /* non-zero for diraniso() */ |
| 223 |
|
multcolor(nd.mcolor, r->pcol); /* modify material color */ |
| 188 |
– |
transtest = 0; |
| 224 |
|
/* get specular component */ |
| 225 |
|
if ((nd.rspec = m->oargs.farg[3]) > FTINY) { |
| 226 |
|
nd.specfl |= SP_REFL; |
| 230 |
|
else |
| 231 |
|
setcolor(nd.scolor, 1.0, 1.0, 1.0); |
| 232 |
|
scalecolor(nd.scolor, nd.rspec); |
| 233 |
< |
/* improved model */ |
| 234 |
< |
dtmp = exp(-BSPEC(m)*nd.pdot); |
| 233 |
> |
/* check threshold */ |
| 234 |
> |
if (specthresh >= nd.rspec-FTINY) |
| 235 |
> |
nd.specfl |= SP_RBLT; |
| 236 |
> |
/* compute refl. direction */ |
| 237 |
|
for (i = 0; i < 3; i++) |
| 238 |
< |
colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp; |
| 239 |
< |
nd.rspec += (1.0-nd.rspec)*dtmp; |
| 240 |
< |
|
| 241 |
< |
if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) { |
| 205 |
< |
RAY lr; |
| 206 |
< |
if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) { |
| 207 |
< |
for (i = 0; i < 3; i++) |
| 208 |
< |
lr.rdir[i] = r->rdir[i] + |
| 209 |
< |
2.0*nd.pdot*nd.pnorm[i]; |
| 210 |
< |
rayvalue(&lr); |
| 211 |
< |
multcolor(lr.rcol, nd.scolor); |
| 212 |
< |
addcolor(r->rcol, lr.rcol); |
| 213 |
< |
} |
| 214 |
< |
} |
| 238 |
> |
nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i]; |
| 239 |
> |
if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */ |
| 240 |
> |
for (i = 0; i < 3; i++) /* safety measure */ |
| 241 |
> |
nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; |
| 242 |
|
} |
| 243 |
|
/* compute transmission */ |
| 244 |
< |
if (m->otype == MAT_TRANS) { |
| 244 |
> |
if (m->otype == MAT_TRANS2) { |
| 245 |
|
nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec); |
| 246 |
|
nd.tspec = nd.trans * m->oargs.farg[7]; |
| 247 |
|
nd.tdiff = nd.trans - nd.tspec; |
| 248 |
|
if (nd.tspec > FTINY) { |
| 249 |
|
nd.specfl |= SP_TRAN; |
| 250 |
< |
if (r->crtype & SHADOW || |
| 251 |
< |
DOT(r->pert,r->pert) <= FTINY*FTINY) { |
| 250 |
> |
/* check threshold */ |
| 251 |
> |
if (specthresh >= nd.tspec-FTINY) |
| 252 |
> |
nd.specfl |= SP_TBLT; |
| 253 |
> |
if (DOT(r->pert,r->pert) <= FTINY*FTINY) { |
| 254 |
|
VCOPY(nd.prdir, r->rdir); |
| 226 |
– |
transtest = 2; |
| 255 |
|
} else { |
| 256 |
|
for (i = 0; i < 3; i++) /* perturb */ |
| 257 |
< |
nd.prdir[i] = r->rdir[i] - |
| 258 |
< |
.75*r->pert[i]; |
| 259 |
< |
normalize(nd.prdir); |
| 257 |
> |
nd.prdir[i] = r->rdir[i] - r->pert[i]; |
| 258 |
> |
if (DOT(nd.prdir, r->ron) < -FTINY) |
| 259 |
> |
normalize(nd.prdir); /* OK */ |
| 260 |
> |
else |
| 261 |
> |
VCOPY(nd.prdir, r->rdir); |
| 262 |
|
} |
| 263 |
|
} |
| 264 |
|
} else |
| 265 |
|
nd.tdiff = nd.tspec = nd.trans = 0.0; |
| 236 |
– |
/* transmitted ray */ |
| 237 |
– |
if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) { |
| 238 |
– |
RAY lr; |
| 239 |
– |
if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) { |
| 240 |
– |
VCOPY(lr.rdir, nd.prdir); |
| 241 |
– |
rayvalue(&lr); |
| 242 |
– |
scalecolor(lr.rcol, nd.tspec); |
| 243 |
– |
multcolor(lr.rcol, nd.mcolor); /* modified by color */ |
| 244 |
– |
addcolor(r->rcol, lr.rcol); |
| 245 |
– |
transtest *= bright(lr.rcol); |
| 246 |
– |
transdist = r->rot + lr.rt; |
| 247 |
– |
} |
| 248 |
– |
} |
| 266 |
|
|
| 250 |
– |
if (r->crtype & SHADOW) /* the rest is shadow */ |
| 251 |
– |
return; |
| 267 |
|
/* diffuse reflection */ |
| 268 |
|
nd.rdiff = 1.0 - nd.trans - nd.rspec; |
| 269 |
|
|
| 270 |
< |
if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) |
| 271 |
< |
return; /* 100% pure specular */ |
| 270 |
> |
if (r->ro != NULL && isflat(r->ro->otype)) |
| 271 |
> |
nd.specfl |= SP_FLAT; |
| 272 |
|
|
| 273 |
|
getacoords(r, &nd); /* set up coordinates */ |
| 274 |
|
|
| 275 |
< |
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & (SP_PURE|SP_BADU))) |
| 275 |
> |
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU)) |
| 276 |
|
agaussamp(r, &nd); |
| 277 |
|
|
| 278 |
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
| 279 |
< |
ambient(ctmp, r); |
| 280 |
< |
scalecolor(ctmp, nd.rdiff); |
| 279 |
> |
ambient(ctmp, r, nd.pnorm); |
| 280 |
> |
if (nd.specfl & SP_RBLT) |
| 281 |
> |
scalecolor(ctmp, 1.0-nd.trans); |
| 282 |
> |
else |
| 283 |
> |
scalecolor(ctmp, nd.rdiff); |
| 284 |
|
multcolor(ctmp, nd.mcolor); /* modified by material color */ |
| 285 |
|
addcolor(r->rcol, ctmp); /* add to returned color */ |
| 286 |
|
} |
| 287 |
|
if (nd.tdiff > FTINY) { /* ambient from other side */ |
| 288 |
+ |
FVECT bnorm; |
| 289 |
+ |
|
| 290 |
|
flipsurface(r); |
| 291 |
< |
ambient(ctmp, r); |
| 292 |
< |
scalecolor(ctmp, nd.tdiff); |
| 291 |
> |
bnorm[0] = -nd.pnorm[0]; |
| 292 |
> |
bnorm[1] = -nd.pnorm[1]; |
| 293 |
> |
bnorm[2] = -nd.pnorm[2]; |
| 294 |
> |
ambient(ctmp, r, bnorm); |
| 295 |
> |
if (nd.specfl & SP_TBLT) |
| 296 |
> |
scalecolor(ctmp, nd.trans); |
| 297 |
> |
else |
| 298 |
> |
scalecolor(ctmp, nd.tdiff); |
| 299 |
|
multcolor(ctmp, nd.mcolor); /* modified by color */ |
| 300 |
|
addcolor(r->rcol, ctmp); |
| 301 |
|
flipsurface(r); |
| 302 |
|
} |
| 303 |
|
/* add direct component */ |
| 304 |
|
direct(r, diraniso, &nd); |
| 305 |
< |
/* check distance */ |
| 306 |
< |
if (transtest > bright(r->rcol)) |
| 281 |
< |
r->rt = transdist; |
| 305 |
> |
|
| 306 |
> |
return(1); |
| 307 |
|
} |
| 308 |
|
|
| 309 |
|
|
| 325 |
|
np->specfl |= SP_BADU; |
| 326 |
|
return; |
| 327 |
|
} |
| 328 |
< |
multv3(np->u, np->u, mf->f->xfm); |
| 328 |
> |
if (mf->f != &unitxf) |
| 329 |
> |
multv3(np->u, np->u, mf->f->xfm); |
| 330 |
|
fcross(np->v, np->pnorm, np->u); |
| 331 |
|
if (normalize(np->v) == 0.0) { |
| 332 |
|
objerror(np->mp, WARNING, "illegal orientation vector"); |
| 346 |
|
FVECT h; |
| 347 |
|
double rv[2]; |
| 348 |
|
double d, sinp, cosp; |
| 349 |
< |
int ntries; |
| 349 |
> |
int niter; |
| 350 |
|
register int i; |
| 351 |
|
/* compute reflection */ |
| 352 |
< |
if (np->specfl & SP_REFL && |
| 352 |
> |
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
| 353 |
|
rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { |
| 354 |
|
dimlist[ndims++] = (int)np->mp; |
| 355 |
< |
for (ntries = 0; ntries < 10; ntries++) { |
| 356 |
< |
dimlist[ndims] = ntries * 3601; |
| 357 |
< |
d = urand(ilhash(dimlist,ndims+1)+samplendx); |
| 355 |
> |
for (niter = 0; niter < MAXITER; niter++) { |
| 356 |
> |
if (niter) |
| 357 |
> |
d = frandom(); |
| 358 |
> |
else |
| 359 |
> |
d = urand(ilhash(dimlist,ndims)+samplendx); |
| 360 |
|
multisamp(rv, 2, d); |
| 361 |
|
d = 2.0*PI * rv[0]; |
| 362 |
< |
cosp = np->u_alpha * cos(d); |
| 363 |
< |
sinp = np->v_alpha * sin(d); |
| 362 |
> |
cosp = tcos(d) * np->u_alpha; |
| 363 |
> |
sinp = tsin(d) * np->v_alpha; |
| 364 |
|
d = sqrt(cosp*cosp + sinp*sinp); |
| 365 |
|
cosp /= d; |
| 366 |
|
sinp /= d; |
| 367 |
+ |
rv[1] = 1.0 - specjitter*rv[1]; |
| 368 |
|
if (rv[1] <= FTINY) |
| 369 |
|
d = 1.0; |
| 370 |
|
else |
| 387 |
|
ndims--; |
| 388 |
|
} |
| 389 |
|
/* compute transmission */ |
| 390 |
+ |
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
| 391 |
+ |
rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { |
| 392 |
+ |
dimlist[ndims++] = (int)np->mp; |
| 393 |
+ |
for (niter = 0; niter < MAXITER; niter++) { |
| 394 |
+ |
if (niter) |
| 395 |
+ |
d = frandom(); |
| 396 |
+ |
else |
| 397 |
+ |
d = urand(ilhash(dimlist,ndims)+1823+samplendx); |
| 398 |
+ |
multisamp(rv, 2, d); |
| 399 |
+ |
d = 2.0*PI * rv[0]; |
| 400 |
+ |
cosp = tcos(d) * np->u_alpha; |
| 401 |
+ |
sinp = tsin(d) * np->v_alpha; |
| 402 |
+ |
d = sqrt(cosp*cosp + sinp*sinp); |
| 403 |
+ |
cosp /= d; |
| 404 |
+ |
sinp /= d; |
| 405 |
+ |
rv[1] = 1.0 - specjitter*rv[1]; |
| 406 |
+ |
if (rv[1] <= FTINY) |
| 407 |
+ |
d = 1.0; |
| 408 |
+ |
else |
| 409 |
+ |
d = sqrt(-log(rv[1]) / |
| 410 |
+ |
(cosp*cosp/(np->u_alpha*np->u_alpha) + |
| 411 |
+ |
sinp*sinp/(np->v_alpha*np->v_alpha))); |
| 412 |
+ |
for (i = 0; i < 3; i++) |
| 413 |
+ |
sr.rdir[i] = np->prdir[i] + |
| 414 |
+ |
d*(cosp*np->u[i] + sinp*np->v[i]); |
| 415 |
+ |
if (DOT(sr.rdir, r->ron) < -FTINY) { |
| 416 |
+ |
normalize(sr.rdir); /* OK, normalize */ |
| 417 |
+ |
rayvalue(&sr); |
| 418 |
+ |
scalecolor(sr.rcol, np->tspec); |
| 419 |
+ |
multcolor(sr.rcol, np->mcolor); /* modify */ |
| 420 |
+ |
addcolor(r->rcol, sr.rcol); |
| 421 |
+ |
break; |
| 422 |
+ |
} |
| 423 |
+ |
} |
| 424 |
+ |
ndims--; |
| 425 |
+ |
} |
| 426 |
|
} |