--- ray/src/rt/aniso.c 1992/05/19 17:09:06 2.18 +++ ray/src/rt/aniso.c 1992/10/16 10:20:27 2.22 @@ -20,8 +20,8 @@ extern double specthresh; /* specular sampling thres extern double specjitter; /* specular sampling jitter */ /* - * This anisotropic reflection model uses a variant on the - * exponential Gaussian used in normal.c. + * This routine implements the anisotropic Gaussian + * model described by Ward in Siggraph `92 article. * We orient the surface towards the incoming ray, so a single * surface can be used to represent an infinitely thin object. * @@ -117,7 +117,7 @@ double omega; /* light source size */ dtmp2 *= dtmp2 / av2; /* gaussian */ dtmp = (dtmp1 + dtmp2) / (1.0 + DOT(np->pnorm, h)); - dtmp = exp(-2.0*dtmp) * 1.0/(4.0*PI) + dtmp = exp(-2.0*dtmp) * (1.0/4.0/PI) * sqrt(ldot/(np->pdot*au2*av2)); /* worth using? */ if (dtmp > FTINY) { @@ -149,19 +149,21 @@ double omega; /* light source size */ h[0] = ldir[0] - np->prdir[0]; h[1] = ldir[1] - np->prdir[1]; h[2] = ldir[2] - np->prdir[2]; - dtmp = DOT(h,np->pnorm); - dtmp = DOT(h,h) - dtmp*dtmp; + dtmp = DOT(h,h); if (dtmp > FTINY*FTINY) { - dtmp1 = DOT(h,np->u); - dtmp1 = dtmp1*dtmp1 / (au2*dtmp); - dtmp2 = DOT(h,np->v); - dtmp2 = dtmp2*dtmp2 / (av2*dtmp); - dtmp = 2. - 2.*DOT(ldir,np->prdir); - dtmp *= dtmp1 + dtmp2; + dtmp1 = DOT(h,np->pnorm); + dtmp = 1.0 - dtmp1*dtmp1/dtmp; + if (dtmp > FTINY*FTINY) { + dtmp1 = DOT(h,np->u); + dtmp1 = dtmp1*dtmp1 / au2; + dtmp2 = DOT(h,np->v); + dtmp2 = dtmp2*dtmp2 / av2; + dtmp = (dtmp1 + dtmp2) / dtmp; + } } else dtmp = 0.0; /* gaussian */ - dtmp = exp(-dtmp) * 1.0/(4.0*PI) + dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2)); /* worth using? */ if (dtmp > FTINY) {