| 39 |
|
/* specularity flags */ |
| 40 |
|
#define SP_REFL 01 /* has reflected specular component */ |
| 41 |
|
#define SP_TRAN 02 /* has transmitted specular */ |
| 42 |
< |
#define SP_PURE 010 /* purely specular (zero roughness) */ |
| 43 |
< |
#define SP_FLAT 020 /* reflecting surface is flat */ |
| 44 |
< |
#define SP_RBLT 040 /* reflection below sample threshold */ |
| 45 |
< |
#define SP_TBLT 0100 /* transmission below threshold */ |
| 46 |
< |
#define SP_BADU 0200 /* bad u direction calculation */ |
| 42 |
> |
#define SP_FLAT 04 /* reflecting surface is flat */ |
| 43 |
> |
#define SP_RBLT 010 /* reflection below sample threshold */ |
| 44 |
> |
#define SP_TBLT 020 /* transmission below threshold */ |
| 45 |
> |
#define SP_BADU 040 /* bad u direction calculation */ |
| 46 |
|
|
| 47 |
|
typedef struct { |
| 48 |
|
OBJREC *mp; /* material pointer */ |
| 70 |
|
double omega; /* light source size */ |
| 71 |
|
{ |
| 72 |
|
double ldot; |
| 73 |
< |
double dtmp, dtmp2; |
| 73 |
> |
double dtmp, dtmp1, dtmp2; |
| 74 |
|
FVECT h; |
| 75 |
|
double au2, av2; |
| 76 |
|
COLOR ctmp; |
| 93 |
|
scalecolor(ctmp, dtmp); |
| 94 |
|
addcolor(cval, ctmp); |
| 95 |
|
} |
| 96 |
< |
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE|SP_BADU)) == SP_REFL) { |
| 96 |
> |
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) { |
| 97 |
|
/* |
| 98 |
|
* Compute specular reflection coefficient using |
| 99 |
|
* anisotropic gaussian distribution model. |
| 103 |
|
au2 = av2 = omega/(4.0*PI); |
| 104 |
|
else |
| 105 |
|
au2 = av2 = 0.0; |
| 106 |
< |
au2 += np->u_alpha * np->u_alpha; |
| 107 |
< |
av2 += np->v_alpha * np->v_alpha; |
| 106 |
> |
au2 += np->u_alpha*np->u_alpha; |
| 107 |
> |
av2 += np->v_alpha*np->v_alpha; |
| 108 |
|
/* half vector */ |
| 109 |
|
h[0] = ldir[0] - np->rp->rdir[0]; |
| 110 |
|
h[1] = ldir[1] - np->rp->rdir[1]; |
| 111 |
|
h[2] = ldir[2] - np->rp->rdir[2]; |
| 112 |
|
normalize(h); |
| 113 |
|
/* ellipse */ |
| 114 |
< |
dtmp = DOT(np->u, h); |
| 115 |
< |
dtmp *= dtmp / au2; |
| 114 |
> |
dtmp1 = DOT(np->u, h); |
| 115 |
> |
dtmp1 *= dtmp1 / au2; |
| 116 |
|
dtmp2 = DOT(np->v, h); |
| 117 |
|
dtmp2 *= dtmp2 / av2; |
| 118 |
|
/* gaussian */ |
| 119 |
< |
dtmp = (dtmp + dtmp2) / (1.0 + DOT(np->pnorm, h)); |
| 120 |
< |
dtmp = exp(-2.0*dtmp) / (4.0*PI * sqrt(au2*av2)); |
| 119 |
> |
dtmp = (dtmp1 + dtmp2) / (1.0 + DOT(np->pnorm, h)); |
| 120 |
> |
dtmp = exp(-2.0*dtmp) * 1.0/(4.0*PI) |
| 121 |
> |
* sqrt(ldot/(np->pdot*au2*av2)); |
| 122 |
|
/* worth using? */ |
| 123 |
|
if (dtmp > FTINY) { |
| 124 |
|
copycolor(ctmp, np->scolor); |
| 125 |
< |
dtmp *= omega / np->pdot; |
| 125 |
> |
dtmp *= omega; |
| 126 |
|
scalecolor(ctmp, dtmp); |
| 127 |
|
addcolor(cval, ctmp); |
| 128 |
|
} |
| 136 |
|
scalecolor(ctmp, dtmp); |
| 137 |
|
addcolor(cval, ctmp); |
| 138 |
|
} |
| 139 |
< |
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE|SP_BADU)) == SP_TRAN) { |
| 139 |
> |
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) { |
| 140 |
|
/* |
| 141 |
|
* Compute specular transmission. Specular transmission |
| 142 |
|
* is always modified by material color. |
| 143 |
|
*/ |
| 144 |
|
/* roughness + source */ |
| 145 |
+ |
au2 = av2 = omega / PI; |
| 146 |
+ |
au2 += np->u_alpha*np->u_alpha; |
| 147 |
+ |
av2 += np->v_alpha*np->v_alpha; |
| 148 |
+ |
/* "half vector" */ |
| 149 |
+ |
h[0] = ldir[0] - np->prdir[0]; |
| 150 |
+ |
h[1] = ldir[1] - np->prdir[1]; |
| 151 |
+ |
h[2] = ldir[2] - np->prdir[2]; |
| 152 |
+ |
dtmp = DOT(h,h); |
| 153 |
+ |
if (dtmp > FTINY*FTINY) { |
| 154 |
+ |
dtmp1 = DOT(h,np->pnorm); |
| 155 |
+ |
dtmp = 1.0 - dtmp1*dtmp1/dtmp; |
| 156 |
+ |
if (dtmp > FTINY*FTINY) { |
| 157 |
+ |
dtmp1 = DOT(h,np->u); |
| 158 |
+ |
dtmp1 = dtmp1*dtmp1 / au2; |
| 159 |
+ |
dtmp2 = DOT(h,np->v); |
| 160 |
+ |
dtmp2 = dtmp2*dtmp2 / av2; |
| 161 |
+ |
dtmp = (dtmp1 + dtmp2) / dtmp; |
| 162 |
+ |
} |
| 163 |
+ |
} else |
| 164 |
+ |
dtmp = 0.0; |
| 165 |
|
/* gaussian */ |
| 166 |
< |
dtmp = 0.0; |
| 166 |
> |
dtmp = exp(-dtmp) * 1.0/PI |
| 167 |
> |
* sqrt(-ldot/(np->pdot*au2*av2)); |
| 168 |
|
/* worth using? */ |
| 169 |
|
if (dtmp > FTINY) { |
| 170 |
|
copycolor(ctmp, np->mcolor); |
| 171 |
< |
dtmp *= np->tspec * omega / np->pdot; |
| 171 |
> |
dtmp *= np->tspec * omega; |
| 172 |
|
scalecolor(ctmp, dtmp); |
| 173 |
|
addcolor(cval, ctmp); |
| 174 |
|
} |
| 181 |
|
register RAY *r; |
| 182 |
|
{ |
| 183 |
|
ANISODAT nd; |
| 163 |
– |
double transtest, transdist; |
| 184 |
|
double dtmp; |
| 185 |
|
COLOR ctmp; |
| 186 |
|
register int i; |
| 187 |
|
/* easy shadow test */ |
| 188 |
< |
if (r->crtype & SHADOW && m->otype != MAT_TRANS2) |
| 188 |
> |
if (r->crtype & SHADOW) |
| 189 |
|
return; |
| 190 |
|
|
| 191 |
|
if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6)) |
| 200 |
|
nd.specfl = 0; |
| 201 |
|
nd.u_alpha = m->oargs.farg[4]; |
| 202 |
|
nd.v_alpha = m->oargs.farg[5]; |
| 203 |
< |
if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY) |
| 204 |
< |
nd.specfl |= SP_PURE; |
| 203 |
> |
if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY) |
| 204 |
> |
objerror(m, USER, "roughness too small"); |
| 205 |
|
/* reorient if necessary */ |
| 206 |
|
if (r->rod < 0.0) |
| 207 |
|
flipsurface(r); |
| 211 |
|
if (nd.pdot < .001) |
| 212 |
|
nd.pdot = .001; /* non-zero for diraniso() */ |
| 213 |
|
multcolor(nd.mcolor, r->pcol); /* modify material color */ |
| 194 |
– |
transtest = 0; |
| 214 |
|
/* get specular component */ |
| 215 |
|
if ((nd.rspec = m->oargs.farg[3]) > FTINY) { |
| 216 |
|
nd.specfl |= SP_REFL; |
| 227 |
|
nd.rspec += (1.0-nd.rspec)*dtmp; |
| 228 |
|
/* check threshold */ |
| 229 |
|
if (specthresh > FTINY && |
| 230 |
< |
((specthresh >= 1.-FTINY || |
| 231 |
< |
specthresh + (.1 - .2*urand(8199+samplendx)) |
| 213 |
< |
> nd.rspec))) |
| 230 |
> |
(specthresh >= 1.-FTINY || |
| 231 |
> |
specthresh + .05 - .1*frandom() > nd.rspec)) |
| 232 |
|
nd.specfl |= SP_RBLT; |
| 233 |
|
/* compute refl. direction */ |
| 234 |
|
for (i = 0; i < 3; i++) |
| 236 |
|
if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */ |
| 237 |
|
for (i = 0; i < 3; i++) /* safety measure */ |
| 238 |
|
nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; |
| 221 |
– |
|
| 222 |
– |
if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) { |
| 223 |
– |
RAY lr; |
| 224 |
– |
if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) { |
| 225 |
– |
VCOPY(lr.rdir, nd.vrefl); |
| 226 |
– |
rayvalue(&lr); |
| 227 |
– |
multcolor(lr.rcol, nd.scolor); |
| 228 |
– |
addcolor(r->rcol, lr.rcol); |
| 229 |
– |
} |
| 230 |
– |
} |
| 239 |
|
} |
| 240 |
|
/* compute transmission */ |
| 241 |
< |
if (m->otype == MAT_TRANS) { |
| 241 |
> |
if (m->otype == MAT_TRANS2) { |
| 242 |
|
nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec); |
| 243 |
|
nd.tspec = nd.trans * m->oargs.farg[7]; |
| 244 |
|
nd.tdiff = nd.trans - nd.tspec; |
| 246 |
|
nd.specfl |= SP_TRAN; |
| 247 |
|
/* check threshold */ |
| 248 |
|
if (specthresh > FTINY && |
| 249 |
< |
((specthresh >= 1.-FTINY || |
| 250 |
< |
specthresh + |
| 243 |
< |
(.1 - .2*urand(7241+samplendx)) |
| 244 |
< |
> nd.tspec))) |
| 249 |
> |
(specthresh >= 1.-FTINY || |
| 250 |
> |
specthresh + .05 - .1*frandom() > nd.tspec)) |
| 251 |
|
nd.specfl |= SP_TBLT; |
| 252 |
< |
if (r->crtype & SHADOW || |
| 247 |
< |
DOT(r->pert,r->pert) <= FTINY*FTINY) { |
| 252 |
> |
if (DOT(r->pert,r->pert) <= FTINY*FTINY) { |
| 253 |
|
VCOPY(nd.prdir, r->rdir); |
| 249 |
– |
transtest = 2; |
| 254 |
|
} else { |
| 255 |
|
for (i = 0; i < 3; i++) /* perturb */ |
| 256 |
< |
nd.prdir[i] = r->rdir[i] - |
| 253 |
< |
.75*r->pert[i]; |
| 256 |
> |
nd.prdir[i] = r->rdir[i] - r->pert[i]; |
| 257 |
|
if (DOT(nd.prdir, r->ron) < -FTINY) |
| 258 |
|
normalize(nd.prdir); /* OK */ |
| 259 |
|
else |
| 262 |
|
} |
| 263 |
|
} else |
| 264 |
|
nd.tdiff = nd.tspec = nd.trans = 0.0; |
| 262 |
– |
/* transmitted ray */ |
| 263 |
– |
if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) { |
| 264 |
– |
RAY lr; |
| 265 |
– |
if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) { |
| 266 |
– |
VCOPY(lr.rdir, nd.prdir); |
| 267 |
– |
rayvalue(&lr); |
| 268 |
– |
scalecolor(lr.rcol, nd.tspec); |
| 269 |
– |
multcolor(lr.rcol, nd.mcolor); /* modified by color */ |
| 270 |
– |
addcolor(r->rcol, lr.rcol); |
| 271 |
– |
transtest *= bright(lr.rcol); |
| 272 |
– |
transdist = r->rot + lr.rt; |
| 273 |
– |
} |
| 274 |
– |
} |
| 265 |
|
|
| 276 |
– |
if (r->crtype & SHADOW) /* the rest is shadow */ |
| 277 |
– |
return; |
| 266 |
|
/* diffuse reflection */ |
| 267 |
|
nd.rdiff = 1.0 - nd.trans - nd.rspec; |
| 268 |
|
|
| 269 |
< |
if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) |
| 270 |
< |
return; /* 100% pure specular */ |
| 283 |
< |
|
| 284 |
< |
if (r->ro->otype == OBJ_FACE || r->ro->otype == OBJ_RING) |
| 269 |
> |
if (r->ro != NULL && (r->ro->otype == OBJ_FACE || |
| 270 |
> |
r->ro->otype == OBJ_RING)) |
| 271 |
|
nd.specfl |= SP_FLAT; |
| 272 |
|
|
| 273 |
|
getacoords(r, &nd); /* set up coordinates */ |
| 274 |
|
|
| 275 |
< |
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & (SP_PURE|SP_BADU))) |
| 275 |
> |
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU)) |
| 276 |
|
agaussamp(r, &nd); |
| 277 |
|
|
| 278 |
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
| 297 |
|
} |
| 298 |
|
/* add direct component */ |
| 299 |
|
direct(r, diraniso, &nd); |
| 314 |
– |
/* check distance */ |
| 315 |
– |
if (transtest > bright(r->rcol)) |
| 316 |
– |
r->rt = transdist; |
| 300 |
|
} |
| 301 |
|
|
| 302 |
|
|
| 318 |
|
np->specfl |= SP_BADU; |
| 319 |
|
return; |
| 320 |
|
} |
| 321 |
< |
multv3(np->u, np->u, mf->f->xfm); |
| 321 |
> |
if (mf->f != &unitxf) |
| 322 |
> |
multv3(np->u, np->u, mf->f->xfm); |
| 323 |
|
fcross(np->v, np->pnorm, np->u); |
| 324 |
|
if (normalize(np->v) == 0.0) { |
| 325 |
|
objerror(np->mp, WARNING, "illegal orientation vector"); |
| 347 |
|
d = urand(ilhash(dimlist,ndims)+samplendx); |
| 348 |
|
multisamp(rv, 2, d); |
| 349 |
|
d = 2.0*PI * rv[0]; |
| 350 |
< |
cosp = np->u_alpha * cos(d); |
| 351 |
< |
sinp = np->v_alpha * sin(d); |
| 350 |
> |
cosp = cos(d) * np->u_alpha; |
| 351 |
> |
sinp = sin(d) * np->v_alpha; |
| 352 |
|
d = sqrt(cosp*cosp + sinp*sinp); |
| 353 |
|
cosp /= d; |
| 354 |
|
sinp /= d; |
| 373 |
|
ndims--; |
| 374 |
|
} |
| 375 |
|
/* compute transmission */ |
| 376 |
+ |
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
| 377 |
+ |
rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { |
| 378 |
+ |
dimlist[ndims++] = (int)np->mp; |
| 379 |
+ |
d = urand(ilhash(dimlist,ndims)+1823+samplendx); |
| 380 |
+ |
multisamp(rv, 2, d); |
| 381 |
+ |
d = 2.0*PI * rv[0]; |
| 382 |
+ |
cosp = cos(d) * np->u_alpha; |
| 383 |
+ |
sinp = sin(d) * np->v_alpha; |
| 384 |
+ |
d = sqrt(cosp*cosp + sinp*sinp); |
| 385 |
+ |
cosp /= d; |
| 386 |
+ |
sinp /= d; |
| 387 |
+ |
rv[1] = 1.0 - specjitter*rv[1]; |
| 388 |
+ |
if (rv[1] <= FTINY) |
| 389 |
+ |
d = 1.0; |
| 390 |
+ |
else |
| 391 |
+ |
d = sqrt(-log(rv[1]) / |
| 392 |
+ |
(cosp*cosp/(np->u_alpha*np->u_alpha) + |
| 393 |
+ |
sinp*sinp/(np->v_alpha*np->u_alpha))); |
| 394 |
+ |
for (i = 0; i < 3; i++) |
| 395 |
+ |
sr.rdir[i] = np->prdir[i] + |
| 396 |
+ |
d*(cosp*np->u[i] + sinp*np->v[i]); |
| 397 |
+ |
if (DOT(sr.rdir, r->ron) < -FTINY) |
| 398 |
+ |
normalize(sr.rdir); /* OK, normalize */ |
| 399 |
+ |
else |
| 400 |
+ |
VCOPY(sr.rdir, np->prdir); /* else no jitter */ |
| 401 |
+ |
rayvalue(&sr); |
| 402 |
+ |
scalecolor(sr.rcol, np->tspec); |
| 403 |
+ |
multcolor(sr.rcol, np->mcolor); /* modify by color */ |
| 404 |
+ |
addcolor(r->rcol, sr.rcol); |
| 405 |
+ |
ndims--; |
| 406 |
+ |
} |
| 407 |
|
} |