| 20 |
|
extern double specjitter; /* specular sampling jitter */ |
| 21 |
|
|
| 22 |
|
/* |
| 23 |
< |
* This anisotropic reflection model uses a variant on the |
| 24 |
< |
* exponential Gaussian used in normal.c. |
| 23 |
> |
* This routine implements the anisotropic Gaussian |
| 24 |
> |
* model described by Ward in Siggraph `92 article. |
| 25 |
|
* We orient the surface towards the incoming ray, so a single |
| 26 |
|
* surface can be used to represent an infinitely thin object. |
| 27 |
|
* |
| 70 |
|
double omega; /* light source size */ |
| 71 |
|
{ |
| 72 |
|
double ldot; |
| 73 |
< |
double dtmp, dtmp2; |
| 73 |
> |
double dtmp, dtmp1, dtmp2; |
| 74 |
|
FVECT h; |
| 75 |
|
double au2, av2; |
| 76 |
|
COLOR ctmp; |
| 103 |
|
au2 = av2 = omega/(4.0*PI); |
| 104 |
|
else |
| 105 |
|
au2 = av2 = 0.0; |
| 106 |
< |
au2 += np->u_alpha * np->u_alpha; |
| 107 |
< |
av2 += np->v_alpha * np->v_alpha; |
| 106 |
> |
au2 += np->u_alpha*np->u_alpha; |
| 107 |
> |
av2 += np->v_alpha*np->v_alpha; |
| 108 |
|
/* half vector */ |
| 109 |
|
h[0] = ldir[0] - np->rp->rdir[0]; |
| 110 |
|
h[1] = ldir[1] - np->rp->rdir[1]; |
| 111 |
|
h[2] = ldir[2] - np->rp->rdir[2]; |
| 112 |
– |
normalize(h); |
| 112 |
|
/* ellipse */ |
| 113 |
< |
dtmp = DOT(np->u, h); |
| 114 |
< |
dtmp *= dtmp / au2; |
| 113 |
> |
dtmp1 = DOT(np->u, h); |
| 114 |
> |
dtmp1 *= dtmp1 / au2; |
| 115 |
|
dtmp2 = DOT(np->v, h); |
| 116 |
|
dtmp2 *= dtmp2 / av2; |
| 117 |
|
/* gaussian */ |
| 118 |
< |
dtmp = (dtmp + dtmp2) / (1.0 + DOT(np->pnorm, h)); |
| 119 |
< |
dtmp = exp(-2.0*dtmp) / (4.0*PI * sqrt(au2*av2)); |
| 118 |
> |
dtmp = DOT(np->pnorm, h); |
| 119 |
> |
dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp); |
| 120 |
> |
dtmp = exp(-dtmp) * (0.25/PI) |
| 121 |
> |
* sqrt(ldot/(np->pdot*au2*av2)); |
| 122 |
|
/* worth using? */ |
| 123 |
|
if (dtmp > FTINY) { |
| 124 |
|
copycolor(ctmp, np->scolor); |
| 125 |
< |
dtmp *= omega * sqrt(ldot/np->pdot); |
| 125 |
> |
dtmp *= omega; |
| 126 |
|
scalecolor(ctmp, dtmp); |
| 127 |
|
addcolor(cval, ctmp); |
| 128 |
|
} |
| 142 |
|
* is always modified by material color. |
| 143 |
|
*/ |
| 144 |
|
/* roughness + source */ |
| 145 |
+ |
au2 = av2 = omega / PI; |
| 146 |
+ |
au2 += np->u_alpha*np->u_alpha; |
| 147 |
+ |
av2 += np->v_alpha*np->v_alpha; |
| 148 |
+ |
/* "half vector" */ |
| 149 |
+ |
h[0] = ldir[0] - np->prdir[0]; |
| 150 |
+ |
h[1] = ldir[1] - np->prdir[1]; |
| 151 |
+ |
h[2] = ldir[2] - np->prdir[2]; |
| 152 |
+ |
dtmp = DOT(h,h); |
| 153 |
+ |
if (dtmp > FTINY*FTINY) { |
| 154 |
+ |
dtmp1 = DOT(h,np->pnorm); |
| 155 |
+ |
dtmp = 1.0 - dtmp1*dtmp1/dtmp; |
| 156 |
+ |
if (dtmp > FTINY*FTINY) { |
| 157 |
+ |
dtmp1 = DOT(h,np->u); |
| 158 |
+ |
dtmp1 *= dtmp1 / au2; |
| 159 |
+ |
dtmp2 = DOT(h,np->v); |
| 160 |
+ |
dtmp2 *= dtmp2 / av2; |
| 161 |
+ |
dtmp = (dtmp1 + dtmp2) / dtmp; |
| 162 |
+ |
} |
| 163 |
+ |
} else |
| 164 |
+ |
dtmp = 0.0; |
| 165 |
|
/* gaussian */ |
| 166 |
< |
dtmp = 0.0; |
| 166 |
> |
dtmp = exp(-dtmp) * (1.0/PI) |
| 167 |
> |
* sqrt(-ldot/(np->pdot*au2*av2)); |
| 168 |
|
/* worth using? */ |
| 169 |
|
if (dtmp > FTINY) { |
| 170 |
|
copycolor(ctmp, np->mcolor); |
| 171 |
< |
dtmp *= np->tspec * omega * sqrt(ldot/np->pdot); |
| 171 |
> |
dtmp *= np->tspec * omega; |
| 172 |
|
scalecolor(ctmp, dtmp); |
| 173 |
|
addcolor(cval, ctmp); |
| 174 |
|
} |
| 200 |
|
nd.specfl = 0; |
| 201 |
|
nd.u_alpha = m->oargs.farg[4]; |
| 202 |
|
nd.v_alpha = m->oargs.farg[5]; |
| 203 |
< |
if (nd.u_alpha < 1e-6 || nd.v_alpha <= 1e-6) |
| 203 |
> |
if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY) |
| 204 |
|
objerror(m, USER, "roughness too small"); |
| 205 |
|
/* reorient if necessary */ |
| 206 |
|
if (r->rod < 0.0) |
| 238 |
|
nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; |
| 239 |
|
} |
| 240 |
|
/* compute transmission */ |
| 241 |
< |
if (m->otype == MAT_TRANS) { |
| 241 |
> |
if (m->otype == MAT_TRANS2) { |
| 242 |
|
nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec); |
| 243 |
|
nd.tspec = nd.trans * m->oargs.farg[7]; |
| 244 |
|
nd.tdiff = nd.trans - nd.tspec; |
| 253 |
|
VCOPY(nd.prdir, r->rdir); |
| 254 |
|
} else { |
| 255 |
|
for (i = 0; i < 3; i++) /* perturb */ |
| 256 |
< |
nd.prdir[i] = r->rdir[i] - |
| 235 |
< |
0.5*r->pert[i]; |
| 256 |
> |
nd.prdir[i] = r->rdir[i] - r->pert[i]; |
| 257 |
|
if (DOT(nd.prdir, r->ron) < -FTINY) |
| 258 |
|
normalize(nd.prdir); /* OK */ |
| 259 |
|
else |
| 318 |
|
np->specfl |= SP_BADU; |
| 319 |
|
return; |
| 320 |
|
} |
| 321 |
< |
multv3(np->u, np->u, mf->f->xfm); |
| 321 |
> |
if (mf->f != &unitxf) |
| 322 |
> |
multv3(np->u, np->u, mf->f->xfm); |
| 323 |
|
fcross(np->v, np->pnorm, np->u); |
| 324 |
|
if (normalize(np->v) == 0.0) { |
| 325 |
|
objerror(np->mp, WARNING, "illegal orientation vector"); |
| 347 |
|
d = urand(ilhash(dimlist,ndims)+samplendx); |
| 348 |
|
multisamp(rv, 2, d); |
| 349 |
|
d = 2.0*PI * rv[0]; |
| 350 |
< |
cosp = np->u_alpha * cos(d); |
| 351 |
< |
sinp = np->v_alpha * sin(d); |
| 350 |
> |
cosp = cos(d) * np->u_alpha; |
| 351 |
> |
sinp = sin(d) * np->v_alpha; |
| 352 |
|
d = sqrt(cosp*cosp + sinp*sinp); |
| 353 |
|
cosp /= d; |
| 354 |
|
sinp /= d; |
| 379 |
|
d = urand(ilhash(dimlist,ndims)+1823+samplendx); |
| 380 |
|
multisamp(rv, 2, d); |
| 381 |
|
d = 2.0*PI * rv[0]; |
| 382 |
< |
cosp = cos(d); |
| 383 |
< |
sinp = sin(d); |
| 382 |
> |
cosp = cos(d) * np->u_alpha; |
| 383 |
> |
sinp = sin(d) * np->v_alpha; |
| 384 |
> |
d = sqrt(cosp*cosp + sinp*sinp); |
| 385 |
> |
cosp /= d; |
| 386 |
> |
sinp /= d; |
| 387 |
|
rv[1] = 1.0 - specjitter*rv[1]; |
| 388 |
|
if (rv[1] <= FTINY) |
| 389 |
|
d = 1.0; |
| 390 |
|
else |
| 391 |
|
d = sqrt(-log(rv[1]) / |
| 392 |
< |
(cosp*cosp*4./(np->u_alpha*np->u_alpha) + |
| 393 |
< |
sinp*sinp*4./(np->v_alpha*np->v_alpha))); |
| 392 |
> |
(cosp*cosp/(np->u_alpha*np->u_alpha) + |
| 393 |
> |
sinp*sinp/(np->v_alpha*np->u_alpha))); |
| 394 |
|
for (i = 0; i < 3; i++) |
| 395 |
|
sr.rdir[i] = np->prdir[i] + |
| 396 |
|
d*(cosp*np->u[i] + sinp*np->v[i]); |