--- ray/src/rt/aniso.c 1992/03/03 16:20:00 2.11 +++ ray/src/rt/aniso.c 1994/12/21 09:51:44 2.28 @@ -19,9 +19,13 @@ static char SCCSid[] = "$SunId$ LBL"; extern double specthresh; /* specular sampling threshold */ extern double specjitter; /* specular sampling jitter */ +extern int backvis; /* back faces visible? */ + +static agaussamp(), getacoords(); + /* - * This anisotropic reflection model uses a variant on the - * exponential Gaussian used in normal.c. + * This routine implements the anisotropic Gaussian + * model described by Ward in Siggraph `92 article. * We orient the surface towards the incoming ray, so a single * surface can be used to represent an infinitely thin object. * @@ -34,8 +38,6 @@ extern double specjitter; /* specular sampling jitte * 8 red grn blu rspec u-rough v-rough trans tspec */ -#define BSPEC(m) (6.0) /* specularity parameter b */ - /* specularity flags */ #define SP_REFL 01 /* has reflected specular component */ #define SP_TRAN 02 /* has transmitted specular */ @@ -70,7 +72,7 @@ FVECT ldir; /* light source direction */ double omega; /* light source size */ { double ldot; - double dtmp, dtmp2; + double dtmp, dtmp1, dtmp2; FVECT h; double au2, av2; COLOR ctmp; @@ -103,25 +105,26 @@ double omega; /* light source size */ au2 = av2 = omega/(4.0*PI); else au2 = av2 = 0.0; - au2 += np->u_alpha * np->u_alpha; - av2 += np->v_alpha * np->v_alpha; + au2 += np->u_alpha*np->u_alpha; + av2 += np->v_alpha*np->v_alpha; /* half vector */ h[0] = ldir[0] - np->rp->rdir[0]; h[1] = ldir[1] - np->rp->rdir[1]; h[2] = ldir[2] - np->rp->rdir[2]; - normalize(h); /* ellipse */ - dtmp = DOT(np->u, h); - dtmp *= dtmp / au2; + dtmp1 = DOT(np->u, h); + dtmp1 *= dtmp1 / au2; dtmp2 = DOT(np->v, h); dtmp2 *= dtmp2 / av2; /* gaussian */ - dtmp = (dtmp + dtmp2) / (1.0 + DOT(np->pnorm, h)); - dtmp = exp(-2.0*dtmp) / (4.0*PI * sqrt(au2*av2)); + dtmp = DOT(np->pnorm, h); + dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp); + dtmp = exp(-dtmp) * (0.25/PI) + * sqrt(ldot/(np->pdot*au2*av2)); /* worth using? */ if (dtmp > FTINY) { copycolor(ctmp, np->scolor); - dtmp *= omega / np->pdot; + dtmp *= omega; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } @@ -141,12 +144,33 @@ double omega; /* light source size */ * is always modified by material color. */ /* roughness + source */ + au2 = av2 = omega / PI; + au2 += np->u_alpha*np->u_alpha; + av2 += np->v_alpha*np->v_alpha; + /* "half vector" */ + h[0] = ldir[0] - np->prdir[0]; + h[1] = ldir[1] - np->prdir[1]; + h[2] = ldir[2] - np->prdir[2]; + dtmp = DOT(h,h); + if (dtmp > FTINY*FTINY) { + dtmp1 = DOT(h,np->pnorm); + dtmp = 1.0 - dtmp1*dtmp1/dtmp; + if (dtmp > FTINY*FTINY) { + dtmp1 = DOT(h,np->u); + dtmp1 *= dtmp1 / au2; + dtmp2 = DOT(h,np->v); + dtmp2 *= dtmp2 / av2; + dtmp = (dtmp1 + dtmp2) / dtmp; + } + } else + dtmp = 0.0; /* gaussian */ - dtmp = 0.0; + dtmp = exp(-dtmp) * (1.0/PI) + * sqrt(-ldot/(np->pdot*au2*av2)); /* worth using? */ if (dtmp > FTINY) { copycolor(ctmp, np->mcolor); - dtmp *= np->tspec * omega / np->pdot; + dtmp *= np->tspec * omega; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } @@ -159,12 +183,11 @@ register OBJREC *m; register RAY *r; { ANISODAT nd; - double dtmp; COLOR ctmp; register int i; /* easy shadow test */ if (r->crtype & SHADOW) - return; + return(1); if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6)) objerror(m, USER, "bad number of real arguments"); @@ -178,11 +201,16 @@ register RAY *r; nd.specfl = 0; nd.u_alpha = m->oargs.farg[4]; nd.v_alpha = m->oargs.farg[5]; - if (nd.u_alpha < 1e-6 || nd.v_alpha <= 1e-6) + if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY) objerror(m, USER, "roughness too small"); - /* reorient if necessary */ - if (r->rod < 0.0) - flipsurface(r); + /* check for back side */ + if (r->rod < 0.0) { + if (!backvis && m->otype != MAT_TRANS2) { + raytrans(r); + return(1); + } + flipsurface(r); /* reorient if backvis */ + } /* get modifiers */ raytexture(r, m->omod); nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ @@ -198,15 +226,8 @@ register RAY *r; else setcolor(nd.scolor, 1.0, 1.0, 1.0); scalecolor(nd.scolor, nd.rspec); - /* improved model */ - dtmp = exp(-BSPEC(m)*nd.pdot); - for (i = 0; i < 3; i++) - colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp; - nd.rspec += (1.0-nd.rspec)*dtmp; /* check threshold */ - if (specthresh > FTINY && - ((specthresh >= 1.-FTINY || - specthresh + (.05 - .1*frandom()) > nd.rspec))) + if (specthresh >= nd.rspec-FTINY) nd.specfl |= SP_RBLT; /* compute refl. direction */ for (i = 0; i < 3; i++) @@ -216,24 +237,20 @@ register RAY *r; nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; } /* compute transmission */ - if (m->otype == MAT_TRANS) { + if (m->otype == MAT_TRANS2) { nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec); nd.tspec = nd.trans * m->oargs.farg[7]; nd.tdiff = nd.trans - nd.tspec; if (nd.tspec > FTINY) { nd.specfl |= SP_TRAN; /* check threshold */ - if (specthresh > FTINY && - ((specthresh >= 1.-FTINY || - specthresh + - (.05 - .1*frandom()) > nd.tspec))) + if (specthresh >= nd.tspec-FTINY) nd.specfl |= SP_TBLT; if (DOT(r->pert,r->pert) <= FTINY*FTINY) { VCOPY(nd.prdir, r->rdir); } else { for (i = 0; i < 3; i++) /* perturb */ - nd.prdir[i] = r->rdir[i] - - 0.5*r->pert[i]; + nd.prdir[i] = r->rdir[i] - r->pert[i]; if (DOT(nd.prdir, r->ron) < -FTINY) normalize(nd.prdir); /* OK */ else @@ -277,6 +294,8 @@ register RAY *r; } /* add direct component */ direct(r, diraniso, &nd); + + return(1); } @@ -298,7 +317,8 @@ register ANISODAT *np; np->specfl |= SP_BADU; return; } - multv3(np->u, np->u, mf->f->xfm); + if (mf->f != &unitxf) + multv3(np->u, np->u, mf->f->xfm); fcross(np->v, np->pnorm, np->u); if (normalize(np->v) == 0.0) { objerror(np->mp, WARNING, "illegal orientation vector"); @@ -326,8 +346,8 @@ register ANISODAT *np; d = urand(ilhash(dimlist,ndims)+samplendx); multisamp(rv, 2, d); d = 2.0*PI * rv[0]; - cosp = np->u_alpha * cos(d); - sinp = np->v_alpha * sin(d); + cosp = cos(d) * np->u_alpha; + sinp = sin(d) * np->v_alpha; d = sqrt(cosp*cosp + sinp*sinp); cosp /= d; sinp /= d; @@ -358,15 +378,18 @@ register ANISODAT *np; d = urand(ilhash(dimlist,ndims)+1823+samplendx); multisamp(rv, 2, d); d = 2.0*PI * rv[0]; - cosp = cos(d); - sinp = sin(d); + cosp = cos(d) * np->u_alpha; + sinp = sin(d) * np->v_alpha; + d = sqrt(cosp*cosp + sinp*sinp); + cosp /= d; + sinp /= d; rv[1] = 1.0 - specjitter*rv[1]; if (rv[1] <= FTINY) d = 1.0; else d = sqrt(-log(rv[1]) / - (cosp*cosp*4./(np->u_alpha*np->u_alpha) + - sinp*sinp*4./(np->v_alpha*np->v_alpha))); + (cosp*cosp/(np->u_alpha*np->u_alpha) + + sinp*sinp/(np->v_alpha*np->u_alpha))); for (i = 0; i < 3; i++) sr.rdir[i] = np->prdir[i] + d*(cosp*np->u[i] + sinp*np->v[i]);