1 |
– |
/* Copyright (c) 1992 Regents of the University of California */ |
2 |
– |
|
1 |
|
#ifndef lint |
2 |
< |
static char SCCSid[] = "$SunId$ LBL"; |
2 |
> |
static const char RCSid[] = "$Id$"; |
3 |
|
#endif |
6 |
– |
|
4 |
|
/* |
5 |
|
* Shading functions for anisotropic materials. |
6 |
|
*/ |
7 |
|
|
8 |
< |
#include "ray.h" |
8 |
> |
#include "copyright.h" |
9 |
|
|
10 |
+ |
#include "ray.h" |
11 |
+ |
#include "ambient.h" |
12 |
|
#include "otypes.h" |
13 |
< |
|
13 |
> |
#include "rtotypes.h" |
14 |
> |
#include "source.h" |
15 |
|
#include "func.h" |
16 |
– |
|
16 |
|
#include "random.h" |
17 |
+ |
#include "pmapmat.h" |
18 |
|
|
19 |
< |
extern double specthresh; /* specular sampling threshold */ |
20 |
< |
extern double specjitter; /* specular sampling jitter */ |
19 |
> |
#ifndef MAXITER |
20 |
> |
#define MAXITER 10 /* maximum # specular ray attempts */ |
21 |
> |
#endif |
22 |
|
|
23 |
|
/* |
24 |
< |
* This anisotropic reflection model uses a variant on the |
25 |
< |
* exponential Gaussian used in normal.c. |
24 |
> |
* This routine implements the anisotropic Gaussian |
25 |
> |
* model described by Ward in Siggraph `92 article, updated with |
26 |
> |
* normalization and sampling adjustments due to Geisler-Moroder and Duer. |
27 |
|
* We orient the surface towards the incoming ray, so a single |
28 |
|
* surface can be used to represent an infinitely thin object. |
29 |
|
* |
30 |
|
* Arguments for MAT_PLASTIC2 and MAT_METAL2 are: |
31 |
|
* 4+ ux uy uz funcfile [transform...] |
32 |
|
* 0 |
33 |
< |
* 6 red grn blu specular-frac. u-facet-slope v-facet-slope |
33 |
> |
* 6 red grn blu specular-frac. u-rough v-rough |
34 |
|
* |
35 |
|
* Real arguments for MAT_TRANS2 are: |
36 |
|
* 8 red grn blu rspec u-rough v-rough trans tspec |
37 |
|
*/ |
38 |
|
|
37 |
– |
#define BSPEC(m) (6.0) /* specularity parameter b */ |
38 |
– |
|
39 |
|
/* specularity flags */ |
40 |
|
#define SP_REFL 01 /* has reflected specular component */ |
41 |
|
#define SP_TRAN 02 /* has transmitted specular */ |
42 |
< |
#define SP_PURE 010 /* purely specular (zero roughness) */ |
43 |
< |
#define SP_FLAT 020 /* reflecting surface is flat */ |
44 |
< |
#define SP_RBLT 040 /* reflection below sample threshold */ |
45 |
< |
#define SP_TBLT 0100 /* transmission below threshold */ |
46 |
< |
#define SP_BADU 0200 /* bad u direction calculation */ |
42 |
> |
#define SP_FLAT 04 /* reflecting surface is flat */ |
43 |
> |
#define SP_RBLT 010 /* reflection below sample threshold */ |
44 |
> |
#define SP_TBLT 020 /* transmission below threshold */ |
45 |
|
|
46 |
|
typedef struct { |
47 |
|
OBJREC *mp; /* material pointer */ |
49 |
|
short specfl; /* specularity flags, defined above */ |
50 |
|
COLOR mcolor; /* color of this material */ |
51 |
|
COLOR scolor; /* color of specular component */ |
52 |
+ |
FVECT vrefl; /* vector in reflected direction */ |
53 |
|
FVECT prdir; /* vector in transmitted direction */ |
54 |
|
FVECT u, v; /* u and v vectors orienting anisotropy */ |
55 |
|
double u_alpha; /* u roughness */ |
61 |
|
double pdot; /* perturbed dot product */ |
62 |
|
} ANISODAT; /* anisotropic material data */ |
63 |
|
|
64 |
+ |
static void getacoords(ANISODAT *np); |
65 |
+ |
static void agaussamp(ANISODAT *np); |
66 |
|
|
67 |
< |
diraniso(cval, np, ldir, omega) /* compute source contribution */ |
68 |
< |
COLOR cval; /* returned coefficient */ |
69 |
< |
register ANISODAT *np; /* material data */ |
70 |
< |
FVECT ldir; /* light source direction */ |
71 |
< |
double omega; /* light source size */ |
67 |
> |
|
68 |
> |
static void |
69 |
> |
diraniso( /* compute source contribution */ |
70 |
> |
COLOR cval, /* returned coefficient */ |
71 |
> |
void *nnp, /* material data */ |
72 |
> |
FVECT ldir, /* light source direction */ |
73 |
> |
double omega /* light source size */ |
74 |
> |
) |
75 |
|
{ |
76 |
+ |
ANISODAT *np = nnp; |
77 |
|
double ldot; |
78 |
< |
double dtmp, dtmp2; |
78 |
> |
double dtmp, dtmp1, dtmp2; |
79 |
|
FVECT h; |
80 |
|
double au2, av2; |
81 |
|
COLOR ctmp; |
87 |
|
if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) |
88 |
|
return; /* wrong side */ |
89 |
|
|
90 |
< |
if (ldot > FTINY && np->rdiff > FTINY) { |
90 |
> |
if ((ldot > FTINY) & (np->rdiff > FTINY)) { |
91 |
|
/* |
92 |
|
* Compute and add diffuse reflected component to returned |
93 |
|
* color. The diffuse reflected component will always be |
94 |
|
* modified by the color of the material. |
95 |
|
*/ |
96 |
|
copycolor(ctmp, np->mcolor); |
97 |
< |
dtmp = ldot * omega * np->rdiff / PI; |
97 |
> |
dtmp = ldot * omega * np->rdiff * (1.0/PI); |
98 |
|
scalecolor(ctmp, dtmp); |
99 |
|
addcolor(cval, ctmp); |
100 |
|
} |
101 |
< |
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE|SP_BADU)) == SP_REFL) { |
101 |
> |
|
102 |
> |
if ((ldot < -FTINY) & (np->tdiff > FTINY)) { |
103 |
|
/* |
104 |
+ |
* Compute diffuse transmission. |
105 |
+ |
*/ |
106 |
+ |
copycolor(ctmp, np->mcolor); |
107 |
+ |
dtmp = -ldot * omega * np->tdiff * (1.0/PI); |
108 |
+ |
scalecolor(ctmp, dtmp); |
109 |
+ |
addcolor(cval, ctmp); |
110 |
+ |
} |
111 |
+ |
|
112 |
+ |
/* PMAP: skip direct specular refl via ambient bounce if already |
113 |
+ |
* accounted for in photon map */ |
114 |
+ |
if (ambRayInPmap(np->rp)) |
115 |
+ |
return; |
116 |
+ |
|
117 |
+ |
if (ldot > FTINY && np->specfl&SP_REFL) { |
118 |
+ |
/* |
119 |
|
* Compute specular reflection coefficient using |
120 |
< |
* anisotropic gaussian distribution model. |
120 |
> |
* anisotropic Gaussian distribution model. |
121 |
|
*/ |
122 |
|
/* add source width if flat */ |
123 |
|
if (np->specfl & SP_FLAT) |
124 |
< |
au2 = av2 = omega/(4.0*PI); |
124 |
> |
au2 = av2 = omega * (0.25/PI); |
125 |
|
else |
126 |
|
au2 = av2 = 0.0; |
127 |
< |
au2 += np->u_alpha * np->u_alpha; |
128 |
< |
av2 += np->v_alpha * np->v_alpha; |
127 |
> |
au2 += np->u_alpha*np->u_alpha; |
128 |
> |
av2 += np->v_alpha*np->v_alpha; |
129 |
|
/* half vector */ |
130 |
< |
h[0] = ldir[0] - np->rp->rdir[0]; |
110 |
< |
h[1] = ldir[1] - np->rp->rdir[1]; |
111 |
< |
h[2] = ldir[2] - np->rp->rdir[2]; |
112 |
< |
normalize(h); |
130 |
> |
VSUB(h, ldir, np->rp->rdir); |
131 |
|
/* ellipse */ |
132 |
< |
dtmp = DOT(np->u, h); |
133 |
< |
dtmp *= dtmp / au2; |
132 |
> |
dtmp1 = DOT(np->u, h); |
133 |
> |
dtmp1 *= dtmp1 / au2; |
134 |
|
dtmp2 = DOT(np->v, h); |
135 |
|
dtmp2 *= dtmp2 / av2; |
136 |
< |
/* gaussian */ |
137 |
< |
dtmp = (dtmp + dtmp2) / (1.0 + DOT(np->pnorm, h)); |
138 |
< |
dtmp = exp(-2.0*dtmp) / (4.0*PI * sqrt(au2*av2)); |
136 |
> |
/* new W-G-M-D model */ |
137 |
> |
dtmp = DOT(np->pnorm, h); |
138 |
> |
dtmp *= dtmp; |
139 |
> |
dtmp1 = (dtmp1 + dtmp2) / dtmp; |
140 |
> |
dtmp = exp(-dtmp1) * DOT(h,h) / |
141 |
> |
(PI * dtmp*dtmp * sqrt(au2*av2)); |
142 |
|
/* worth using? */ |
143 |
|
if (dtmp > FTINY) { |
144 |
|
copycolor(ctmp, np->scolor); |
145 |
< |
dtmp *= omega / np->pdot; |
145 |
> |
dtmp *= ldot * omega; |
146 |
|
scalecolor(ctmp, dtmp); |
147 |
|
addcolor(cval, ctmp); |
148 |
|
} |
149 |
|
} |
150 |
< |
if (ldot < -FTINY && np->tdiff > FTINY) { |
150 |
> |
|
151 |
> |
if (ldot < -FTINY && np->specfl&SP_TRAN) { |
152 |
|
/* |
131 |
– |
* Compute diffuse transmission. |
132 |
– |
*/ |
133 |
– |
copycolor(ctmp, np->mcolor); |
134 |
– |
dtmp = -ldot * omega * np->tdiff / PI; |
135 |
– |
scalecolor(ctmp, dtmp); |
136 |
– |
addcolor(cval, ctmp); |
137 |
– |
} |
138 |
– |
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE|SP_BADU)) == SP_TRAN) { |
139 |
– |
/* |
153 |
|
* Compute specular transmission. Specular transmission |
154 |
|
* is always modified by material color. |
155 |
|
*/ |
156 |
|
/* roughness + source */ |
157 |
< |
/* gaussian */ |
158 |
< |
dtmp = 0.0; |
157 |
> |
au2 = av2 = omega * (1.0/PI); |
158 |
> |
au2 += np->u_alpha*np->u_alpha; |
159 |
> |
av2 += np->v_alpha*np->v_alpha; |
160 |
> |
/* "half vector" */ |
161 |
> |
VSUB(h, ldir, np->prdir); |
162 |
> |
dtmp = DOT(h,h); |
163 |
> |
if (dtmp > FTINY*FTINY) { |
164 |
> |
dtmp1 = DOT(h,np->pnorm); |
165 |
> |
dtmp = 1.0 - dtmp1*dtmp1/dtmp; |
166 |
> |
if (dtmp > FTINY*FTINY) { |
167 |
> |
dtmp1 = DOT(h,np->u); |
168 |
> |
dtmp1 *= dtmp1 / au2; |
169 |
> |
dtmp2 = DOT(h,np->v); |
170 |
> |
dtmp2 *= dtmp2 / av2; |
171 |
> |
dtmp = (dtmp1 + dtmp2) / dtmp; |
172 |
> |
} |
173 |
> |
} else |
174 |
> |
dtmp = 0.0; |
175 |
> |
/* Gaussian */ |
176 |
> |
dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2)); |
177 |
|
/* worth using? */ |
178 |
|
if (dtmp > FTINY) { |
179 |
|
copycolor(ctmp, np->mcolor); |
180 |
< |
dtmp *= np->tspec * omega / np->pdot; |
180 |
> |
dtmp *= np->tspec * omega; |
181 |
|
scalecolor(ctmp, dtmp); |
182 |
|
addcolor(cval, ctmp); |
183 |
|
} |
185 |
|
} |
186 |
|
|
187 |
|
|
188 |
< |
m_aniso(m, r) /* shade ray that hit something anisotropic */ |
189 |
< |
register OBJREC *m; |
190 |
< |
register RAY *r; |
188 |
> |
int |
189 |
> |
m_aniso( /* shade ray that hit something anisotropic */ |
190 |
> |
OBJREC *m, |
191 |
> |
RAY *r |
192 |
> |
) |
193 |
|
{ |
194 |
|
ANISODAT nd; |
162 |
– |
double transtest, transdist; |
163 |
– |
double dtmp; |
195 |
|
COLOR ctmp; |
196 |
< |
register int i; |
196 |
> |
int i; |
197 |
|
/* easy shadow test */ |
198 |
< |
if (r->crtype & SHADOW && m->otype != MAT_TRANS2) |
199 |
< |
return; |
198 |
> |
if (r->crtype & SHADOW) |
199 |
> |
return(1); |
200 |
|
|
201 |
|
if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6)) |
202 |
|
objerror(m, USER, "bad number of real arguments"); |
203 |
+ |
/* check for back side */ |
204 |
+ |
if (r->rod < 0.0) { |
205 |
+ |
if (!backvis) { |
206 |
+ |
raytrans(r); |
207 |
+ |
return(1); |
208 |
+ |
} |
209 |
+ |
raytexture(r, m->omod); |
210 |
+ |
flipsurface(r); /* reorient if backvis */ |
211 |
+ |
} else |
212 |
+ |
raytexture(r, m->omod); |
213 |
+ |
/* get material color */ |
214 |
|
nd.mp = m; |
215 |
|
nd.rp = r; |
174 |
– |
/* get material color */ |
216 |
|
setcolor(nd.mcolor, m->oargs.farg[0], |
217 |
|
m->oargs.farg[1], |
218 |
|
m->oargs.farg[2]); |
220 |
|
nd.specfl = 0; |
221 |
|
nd.u_alpha = m->oargs.farg[4]; |
222 |
|
nd.v_alpha = m->oargs.farg[5]; |
223 |
< |
if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY) |
224 |
< |
nd.specfl |= SP_PURE; |
225 |
< |
/* reorient if necessary */ |
185 |
< |
if (r->rod < 0.0) |
186 |
< |
flipsurface(r); |
187 |
< |
/* get modifiers */ |
188 |
< |
raytexture(r, m->omod); |
223 |
> |
if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY)) |
224 |
> |
objerror(m, USER, "roughness too small"); |
225 |
> |
|
226 |
|
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ |
227 |
|
if (nd.pdot < .001) |
228 |
|
nd.pdot = .001; /* non-zero for diraniso() */ |
229 |
|
multcolor(nd.mcolor, r->pcol); /* modify material color */ |
193 |
– |
transtest = 0; |
230 |
|
/* get specular component */ |
231 |
|
if ((nd.rspec = m->oargs.farg[3]) > FTINY) { |
232 |
|
nd.specfl |= SP_REFL; |
236 |
|
else |
237 |
|
setcolor(nd.scolor, 1.0, 1.0, 1.0); |
238 |
|
scalecolor(nd.scolor, nd.rspec); |
203 |
– |
/* improved model */ |
204 |
– |
dtmp = exp(-BSPEC(m)*nd.pdot); |
205 |
– |
for (i = 0; i < 3; i++) |
206 |
– |
colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp; |
207 |
– |
nd.rspec += (1.0-nd.rspec)*dtmp; |
239 |
|
/* check threshold */ |
240 |
< |
if (specthresh > FTINY && |
210 |
< |
((specthresh >= 1.-FTINY || |
211 |
< |
specthresh + (.1 - .2*urand(8199+samplendx)) |
212 |
< |
> nd.rspec))) |
240 |
> |
if (specthresh >= nd.rspec-FTINY) |
241 |
|
nd.specfl |= SP_RBLT; |
242 |
< |
|
243 |
< |
if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) { |
244 |
< |
RAY lr; |
245 |
< |
if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) { |
218 |
< |
for (i = 0; i < 3; i++) |
219 |
< |
lr.rdir[i] = r->rdir[i] + |
220 |
< |
2.0*nd.pdot*nd.pnorm[i]; |
221 |
< |
rayvalue(&lr); |
222 |
< |
multcolor(lr.rcol, nd.scolor); |
223 |
< |
addcolor(r->rcol, lr.rcol); |
224 |
< |
} |
225 |
< |
} |
242 |
> |
/* compute refl. direction */ |
243 |
> |
VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.0*nd.pdot); |
244 |
> |
if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */ |
245 |
> |
VSUM(nd.vrefl, r->rdir, r->ron, 2.0*r->rod); |
246 |
|
} |
247 |
|
/* compute transmission */ |
248 |
< |
if (m->otype == MAT_TRANS) { |
248 |
> |
if (m->otype == MAT_TRANS2) { |
249 |
|
nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec); |
250 |
|
nd.tspec = nd.trans * m->oargs.farg[7]; |
251 |
|
nd.tdiff = nd.trans - nd.tspec; |
252 |
|
if (nd.tspec > FTINY) { |
253 |
|
nd.specfl |= SP_TRAN; |
254 |
|
/* check threshold */ |
255 |
< |
if (specthresh > FTINY && |
236 |
< |
((specthresh >= 1.-FTINY || |
237 |
< |
specthresh + |
238 |
< |
(.1 - .2*urand(7241+samplendx)) |
239 |
< |
> nd.tspec))) |
255 |
> |
if (specthresh >= nd.tspec-FTINY) |
256 |
|
nd.specfl |= SP_TBLT; |
257 |
< |
if (r->crtype & SHADOW || |
242 |
< |
DOT(r->pert,r->pert) <= FTINY*FTINY) { |
257 |
> |
if (DOT(r->pert,r->pert) <= FTINY*FTINY) { |
258 |
|
VCOPY(nd.prdir, r->rdir); |
244 |
– |
transtest = 2; |
259 |
|
} else { |
260 |
|
for (i = 0; i < 3; i++) /* perturb */ |
261 |
< |
nd.prdir[i] = r->rdir[i] - |
262 |
< |
.75*r->pert[i]; |
263 |
< |
normalize(nd.prdir); |
261 |
> |
nd.prdir[i] = r->rdir[i] - r->pert[i]; |
262 |
> |
if (DOT(nd.prdir, r->ron) < -FTINY) |
263 |
> |
normalize(nd.prdir); /* OK */ |
264 |
> |
else |
265 |
> |
VCOPY(nd.prdir, r->rdir); |
266 |
|
} |
267 |
|
} |
268 |
|
} else |
269 |
|
nd.tdiff = nd.tspec = nd.trans = 0.0; |
254 |
– |
/* transmitted ray */ |
255 |
– |
if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) { |
256 |
– |
RAY lr; |
257 |
– |
if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) { |
258 |
– |
VCOPY(lr.rdir, nd.prdir); |
259 |
– |
rayvalue(&lr); |
260 |
– |
scalecolor(lr.rcol, nd.tspec); |
261 |
– |
multcolor(lr.rcol, nd.mcolor); /* modified by color */ |
262 |
– |
addcolor(r->rcol, lr.rcol); |
263 |
– |
transtest *= bright(lr.rcol); |
264 |
– |
transdist = r->rot + lr.rt; |
265 |
– |
} |
266 |
– |
} |
270 |
|
|
268 |
– |
if (r->crtype & SHADOW) /* the rest is shadow */ |
269 |
– |
return; |
271 |
|
/* diffuse reflection */ |
272 |
|
nd.rdiff = 1.0 - nd.trans - nd.rspec; |
273 |
|
|
274 |
< |
if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) |
274 |
< |
return; /* 100% pure specular */ |
275 |
< |
|
276 |
< |
if (r->ro->otype == OBJ_FACE || r->ro->otype == OBJ_RING) |
274 |
> |
if (r->ro != NULL && isflat(r->ro->otype)) |
275 |
|
nd.specfl |= SP_FLAT; |
276 |
|
|
277 |
< |
getacoords(r, &nd); /* set up coordinates */ |
277 |
> |
getacoords(&nd); /* set up coordinates */ |
278 |
|
|
279 |
< |
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & (SP_PURE|SP_BADU))) |
280 |
< |
agaussamp(r, &nd); |
279 |
> |
/* PMAP: skip indirect specular via ambient bounce if already accounted |
280 |
> |
* for in photon map */ |
281 |
> |
if (!ambRayInPmap(r) && nd.specfl & (SP_REFL|SP_TRAN)) |
282 |
> |
agaussamp(&nd); |
283 |
|
|
284 |
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
285 |
< |
ambient(ctmp, r); |
286 |
< |
if (nd.specfl & SP_RBLT) |
287 |
< |
scalecolor(ctmp, 1.0-nd.trans); |
288 |
< |
else |
289 |
< |
scalecolor(ctmp, nd.rdiff); |
290 |
< |
multcolor(ctmp, nd.mcolor); /* modified by material color */ |
285 |
> |
copycolor(ctmp, nd.mcolor); /* modified by material color */ |
286 |
> |
scalecolor(ctmp, nd.rdiff); |
287 |
> |
if (nd.specfl & SP_RBLT) /* add in specular as well? */ |
288 |
> |
addcolor(ctmp, nd.scolor); |
289 |
> |
multambient(ctmp, r, nd.pnorm); |
290 |
|
addcolor(r->rcol, ctmp); /* add to returned color */ |
291 |
|
} |
292 |
+ |
|
293 |
|
if (nd.tdiff > FTINY) { /* ambient from other side */ |
294 |
+ |
FVECT bnorm; |
295 |
+ |
|
296 |
|
flipsurface(r); |
297 |
< |
ambient(ctmp, r); |
297 |
> |
bnorm[0] = -nd.pnorm[0]; |
298 |
> |
bnorm[1] = -nd.pnorm[1]; |
299 |
> |
bnorm[2] = -nd.pnorm[2]; |
300 |
> |
copycolor(ctmp, nd.mcolor); /* modified by color */ |
301 |
|
if (nd.specfl & SP_TBLT) |
302 |
|
scalecolor(ctmp, nd.trans); |
303 |
|
else |
304 |
|
scalecolor(ctmp, nd.tdiff); |
305 |
< |
multcolor(ctmp, nd.mcolor); /* modified by color */ |
305 |
> |
multambient(ctmp, r, bnorm); |
306 |
|
addcolor(r->rcol, ctmp); |
307 |
|
flipsurface(r); |
308 |
|
} |
309 |
|
/* add direct component */ |
310 |
|
direct(r, diraniso, &nd); |
311 |
< |
/* check distance */ |
312 |
< |
if (transtest > bright(r->rcol)) |
308 |
< |
r->rt = transdist; |
311 |
> |
|
312 |
> |
return(1); |
313 |
|
} |
314 |
|
|
315 |
< |
|
316 |
< |
static |
317 |
< |
getacoords(r, np) /* set up coordinate system */ |
318 |
< |
RAY *r; |
315 |
< |
register ANISODAT *np; |
315 |
> |
static void |
316 |
> |
getacoords( /* set up coordinate system */ |
317 |
> |
ANISODAT *np |
318 |
> |
) |
319 |
|
{ |
320 |
< |
register MFUNC *mf; |
321 |
< |
register int i; |
320 |
> |
MFUNC *mf; |
321 |
> |
int i; |
322 |
|
|
323 |
|
mf = getfunc(np->mp, 3, 0x7, 1); |
324 |
< |
setfunc(np->mp, r); |
324 |
> |
setfunc(np->mp, np->rp); |
325 |
|
errno = 0; |
326 |
|
for (i = 0; i < 3; i++) |
327 |
|
np->u[i] = evalue(mf->ep[i]); |
328 |
< |
if (errno) { |
329 |
< |
objerror(np->mp, WARNING, "compute error"); |
330 |
< |
np->specfl |= SP_BADU; |
331 |
< |
return; |
329 |
< |
} |
330 |
< |
multv3(np->u, np->u, mf->f->xfm); |
328 |
> |
if ((errno == EDOM) | (errno == ERANGE)) |
329 |
> |
np->u[0] = np->u[1] = np->u[2] = 0.0; |
330 |
> |
if (mf->fxp != &unitxf) |
331 |
> |
multv3(np->u, np->u, mf->fxp->xfm); |
332 |
|
fcross(np->v, np->pnorm, np->u); |
333 |
|
if (normalize(np->v) == 0.0) { |
334 |
< |
objerror(np->mp, WARNING, "illegal orientation vector"); |
335 |
< |
np->specfl |= SP_BADU; |
336 |
< |
return; |
337 |
< |
} |
338 |
< |
fcross(np->u, np->v, np->pnorm); |
334 |
> |
if (fabs(np->u_alpha - np->v_alpha) > 0.001) |
335 |
> |
objerror(np->mp, WARNING, "illegal orientation vector"); |
336 |
> |
getperpendicular(np->u, np->pnorm, 1); /* punting */ |
337 |
> |
fcross(np->v, np->pnorm, np->u); |
338 |
> |
np->u_alpha = np->v_alpha = sqrt( 0.5 * |
339 |
> |
(np->u_alpha*np->u_alpha + np->v_alpha*np->v_alpha) ); |
340 |
> |
} else |
341 |
> |
fcross(np->u, np->v, np->pnorm); |
342 |
|
} |
343 |
|
|
344 |
|
|
345 |
< |
static |
346 |
< |
agaussamp(r, np) /* sample anisotropic gaussian specular */ |
347 |
< |
RAY *r; |
348 |
< |
register ANISODAT *np; |
345 |
> |
static void |
346 |
> |
agaussamp( /* sample anisotropic Gaussian specular */ |
347 |
> |
ANISODAT *np |
348 |
> |
) |
349 |
|
{ |
350 |
|
RAY sr; |
351 |
|
FVECT h; |
352 |
|
double rv[2]; |
353 |
|
double d, sinp, cosp; |
354 |
< |
int ntries; |
355 |
< |
register int i; |
354 |
> |
COLOR scol; |
355 |
> |
int maxiter, ntrials, nstarget, nstaken; |
356 |
> |
int i; |
357 |
|
/* compute reflection */ |
358 |
|
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
359 |
< |
rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { |
360 |
< |
dimlist[ndims++] = (int)np->mp; |
361 |
< |
for (ntries = 0; ntries < 10; ntries++) { |
362 |
< |
dimlist[ndims] = ntries * 3601; |
363 |
< |
d = urand(ilhash(dimlist,ndims+1)+samplendx); |
359 |
> |
rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) { |
360 |
> |
nstarget = 1; |
361 |
> |
if (specjitter > 1.5) { /* multiple samples? */ |
362 |
> |
nstarget = specjitter*np->rp->rweight + .5; |
363 |
> |
if (sr.rweight <= minweight*nstarget) |
364 |
> |
nstarget = sr.rweight/minweight; |
365 |
> |
if (nstarget > 1) { |
366 |
> |
d = 1./nstarget; |
367 |
> |
scalecolor(sr.rcoef, d); |
368 |
> |
sr.rweight *= d; |
369 |
> |
} else |
370 |
> |
nstarget = 1; |
371 |
> |
} |
372 |
> |
setcolor(scol, 0., 0., 0.); |
373 |
> |
dimlist[ndims++] = (int)(size_t)np->mp; |
374 |
> |
maxiter = MAXITER*nstarget; |
375 |
> |
for (nstaken = ntrials = 0; nstaken < nstarget && |
376 |
> |
ntrials < maxiter; ntrials++) { |
377 |
> |
if (ntrials) |
378 |
> |
d = frandom(); |
379 |
> |
else |
380 |
> |
d = urand(ilhash(dimlist,ndims)+samplendx); |
381 |
|
multisamp(rv, 2, d); |
382 |
|
d = 2.0*PI * rv[0]; |
383 |
< |
cosp = np->u_alpha * cos(d); |
384 |
< |
sinp = np->v_alpha * sin(d); |
385 |
< |
d = sqrt(cosp*cosp + sinp*sinp); |
386 |
< |
cosp /= d; |
387 |
< |
sinp /= d; |
388 |
< |
rv[1] = 1.0 - specjitter*rv[1]; |
383 |
> |
cosp = tcos(d) * np->u_alpha; |
384 |
> |
sinp = tsin(d) * np->v_alpha; |
385 |
> |
d = 1./sqrt(cosp*cosp + sinp*sinp); |
386 |
> |
cosp *= d; |
387 |
> |
sinp *= d; |
388 |
> |
if ((0. <= specjitter) & (specjitter < 1.)) |
389 |
> |
rv[1] = 1.0 - specjitter*rv[1]; |
390 |
|
if (rv[1] <= FTINY) |
391 |
|
d = 1.0; |
392 |
|
else |
396 |
|
for (i = 0; i < 3; i++) |
397 |
|
h[i] = np->pnorm[i] + |
398 |
|
d*(cosp*np->u[i] + sinp*np->v[i]); |
399 |
< |
d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); |
400 |
< |
for (i = 0; i < 3; i++) |
401 |
< |
sr.rdir[i] = r->rdir[i] + d*h[i]; |
402 |
< |
if (DOT(sr.rdir, r->ron) > FTINY) { |
399 |
> |
d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d); |
400 |
> |
VSUM(sr.rdir, np->rp->rdir, h, d); |
401 |
> |
/* sample rejection test */ |
402 |
> |
if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY) |
403 |
> |
continue; |
404 |
> |
checknorm(sr.rdir); |
405 |
> |
if (nstarget > 1) { /* W-G-M-D adjustment */ |
406 |
> |
if (nstaken) rayclear(&sr); |
407 |
|
rayvalue(&sr); |
408 |
< |
multcolor(sr.rcol, np->scolor); |
409 |
< |
addcolor(r->rcol, sr.rcol); |
410 |
< |
break; |
408 |
> |
d = 2./(1. + np->rp->rod/d); |
409 |
> |
scalecolor(sr.rcol, d); |
410 |
> |
addcolor(scol, sr.rcol); |
411 |
> |
} else { |
412 |
> |
rayvalue(&sr); |
413 |
> |
multcolor(sr.rcol, sr.rcoef); |
414 |
> |
addcolor(np->rp->rcol, sr.rcol); |
415 |
|
} |
416 |
+ |
++nstaken; |
417 |
|
} |
418 |
+ |
if (nstarget > 1) { /* final W-G-M-D weighting */ |
419 |
+ |
multcolor(scol, sr.rcoef); |
420 |
+ |
d = (double)nstarget/ntrials; |
421 |
+ |
scalecolor(scol, d); |
422 |
+ |
addcolor(np->rp->rcol, scol); |
423 |
+ |
} |
424 |
|
ndims--; |
425 |
|
} |
426 |
|
/* compute transmission */ |
427 |
+ |
copycolor(sr.rcoef, np->mcolor); /* modify by material color */ |
428 |
+ |
scalecolor(sr.rcoef, np->tspec); |
429 |
+ |
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
430 |
+ |
rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) { |
431 |
+ |
nstarget = 1; |
432 |
+ |
if (specjitter > 1.5) { /* multiple samples? */ |
433 |
+ |
nstarget = specjitter*np->rp->rweight + .5; |
434 |
+ |
if (sr.rweight <= minweight*nstarget) |
435 |
+ |
nstarget = sr.rweight/minweight; |
436 |
+ |
if (nstarget > 1) { |
437 |
+ |
d = 1./nstarget; |
438 |
+ |
scalecolor(sr.rcoef, d); |
439 |
+ |
sr.rweight *= d; |
440 |
+ |
} else |
441 |
+ |
nstarget = 1; |
442 |
+ |
} |
443 |
+ |
dimlist[ndims++] = (int)(size_t)np->mp; |
444 |
+ |
maxiter = MAXITER*nstarget; |
445 |
+ |
for (nstaken = ntrials = 0; nstaken < nstarget && |
446 |
+ |
ntrials < maxiter; ntrials++) { |
447 |
+ |
if (ntrials) |
448 |
+ |
d = frandom(); |
449 |
+ |
else |
450 |
+ |
d = urand(ilhash(dimlist,ndims)+1823+samplendx); |
451 |
+ |
multisamp(rv, 2, d); |
452 |
+ |
d = 2.0*PI * rv[0]; |
453 |
+ |
cosp = tcos(d) * np->u_alpha; |
454 |
+ |
sinp = tsin(d) * np->v_alpha; |
455 |
+ |
d = 1./sqrt(cosp*cosp + sinp*sinp); |
456 |
+ |
cosp *= d; |
457 |
+ |
sinp *= d; |
458 |
+ |
if ((0. <= specjitter) & (specjitter < 1.)) |
459 |
+ |
rv[1] = 1.0 - specjitter*rv[1]; |
460 |
+ |
if (rv[1] <= FTINY) |
461 |
+ |
d = 1.0; |
462 |
+ |
else |
463 |
+ |
d = sqrt(-log(rv[1]) / |
464 |
+ |
(cosp*cosp/(np->u_alpha*np->u_alpha) + |
465 |
+ |
sinp*sinp/(np->v_alpha*np->v_alpha))); |
466 |
+ |
for (i = 0; i < 3; i++) |
467 |
+ |
sr.rdir[i] = np->prdir[i] + |
468 |
+ |
d*(cosp*np->u[i] + sinp*np->v[i]); |
469 |
+ |
if (DOT(sr.rdir, np->rp->ron) >= -FTINY) |
470 |
+ |
continue; |
471 |
+ |
normalize(sr.rdir); /* OK, normalize */ |
472 |
+ |
if (nstaken) /* multi-sampling */ |
473 |
+ |
rayclear(&sr); |
474 |
+ |
rayvalue(&sr); |
475 |
+ |
multcolor(sr.rcol, sr.rcoef); |
476 |
+ |
addcolor(np->rp->rcol, sr.rcol); |
477 |
+ |
++nstaken; |
478 |
+ |
} |
479 |
+ |
ndims--; |
480 |
+ |
} |
481 |
|
} |