21 |
|
|
22 |
|
/* |
23 |
|
* This routine implements the anisotropic Gaussian |
24 |
< |
* model described by Ward in Siggraph `92 article. |
24 |
> |
* model described by Ward in Siggraph `92 article, updated with |
25 |
> |
* normalization and sampling adjustments due to Geisler-Moroder and Duer. |
26 |
|
* We orient the surface towards the incoming ray, so a single |
27 |
|
* surface can be used to represent an infinitely thin object. |
28 |
|
* |
29 |
|
* Arguments for MAT_PLASTIC2 and MAT_METAL2 are: |
30 |
|
* 4+ ux uy uz funcfile [transform...] |
31 |
|
* 0 |
32 |
< |
* 6 red grn blu specular-frac. u-facet-slope v-facet-slope |
32 |
> |
* 6 red grn blu specular-frac. u-rough v-rough |
33 |
|
* |
34 |
|
* Real arguments for MAT_TRANS2 are: |
35 |
|
* 8 red grn blu rspec u-rough v-rough trans tspec |
41 |
|
#define SP_FLAT 04 /* reflecting surface is flat */ |
42 |
|
#define SP_RBLT 010 /* reflection below sample threshold */ |
43 |
|
#define SP_TBLT 020 /* transmission below threshold */ |
43 |
– |
#define SP_BADU 040 /* bad u direction calculation */ |
44 |
|
|
45 |
|
typedef struct { |
46 |
|
OBJREC *mp; /* material pointer */ |
60 |
|
double pdot; /* perturbed dot product */ |
61 |
|
} ANISODAT; /* anisotropic material data */ |
62 |
|
|
63 |
< |
static srcdirf_t diraniso; |
64 |
< |
static void getacoords(RAY *r, ANISODAT *np); |
65 |
< |
static void agaussamp(RAY *r, ANISODAT *np); |
63 |
> |
static void getacoords(ANISODAT *np); |
64 |
> |
static void agaussamp(ANISODAT *np); |
65 |
|
|
66 |
|
|
67 |
|
static void |
68 |
|
diraniso( /* compute source contribution */ |
69 |
|
COLOR cval, /* returned coefficient */ |
70 |
< |
void *nnp, /* material data */ |
70 |
> |
void *nnp, /* material data */ |
71 |
|
FVECT ldir, /* light source direction */ |
72 |
|
double omega /* light source size */ |
73 |
|
) |
74 |
|
{ |
75 |
< |
register ANISODAT *np = nnp; |
75 |
> |
ANISODAT *np = nnp; |
76 |
|
double ldot; |
77 |
|
double dtmp, dtmp1, dtmp2; |
78 |
|
FVECT h; |
86 |
|
if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) |
87 |
|
return; /* wrong side */ |
88 |
|
|
89 |
< |
if (ldot > FTINY && np->rdiff > FTINY) { |
89 |
> |
if ((ldot > FTINY) & (np->rdiff > FTINY)) { |
90 |
|
/* |
91 |
|
* Compute and add diffuse reflected component to returned |
92 |
|
* color. The diffuse reflected component will always be |
97 |
|
scalecolor(ctmp, dtmp); |
98 |
|
addcolor(cval, ctmp); |
99 |
|
} |
100 |
< |
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) { |
100 |
> |
if (ldot > FTINY && np->specfl&SP_REFL) { |
101 |
|
/* |
102 |
|
* Compute specular reflection coefficient using |
103 |
|
* anisotropic Gaussian distribution model. |
110 |
|
au2 += np->u_alpha*np->u_alpha; |
111 |
|
av2 += np->v_alpha*np->v_alpha; |
112 |
|
/* half vector */ |
113 |
< |
h[0] = ldir[0] - np->rp->rdir[0]; |
115 |
< |
h[1] = ldir[1] - np->rp->rdir[1]; |
116 |
< |
h[2] = ldir[2] - np->rp->rdir[2]; |
113 |
> |
VSUB(h, ldir, np->rp->rdir); |
114 |
|
/* ellipse */ |
115 |
|
dtmp1 = DOT(np->u, h); |
116 |
|
dtmp1 *= dtmp1 / au2; |
130 |
|
addcolor(cval, ctmp); |
131 |
|
} |
132 |
|
} |
133 |
< |
if (ldot < -FTINY && np->tdiff > FTINY) { |
133 |
> |
if ((ldot < -FTINY) & (np->tdiff > FTINY)) { |
134 |
|
/* |
135 |
|
* Compute diffuse transmission. |
136 |
|
*/ |
139 |
|
scalecolor(ctmp, dtmp); |
140 |
|
addcolor(cval, ctmp); |
141 |
|
} |
142 |
< |
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) { |
142 |
> |
if (ldot < -FTINY && np->specfl&SP_TRAN) { |
143 |
|
/* |
144 |
|
* Compute specular transmission. Specular transmission |
145 |
|
* is always modified by material color. |
149 |
|
au2 += np->u_alpha*np->u_alpha; |
150 |
|
av2 += np->v_alpha*np->v_alpha; |
151 |
|
/* "half vector" */ |
152 |
< |
h[0] = ldir[0] - np->prdir[0]; |
156 |
< |
h[1] = ldir[1] - np->prdir[1]; |
157 |
< |
h[2] = ldir[2] - np->prdir[2]; |
152 |
> |
VSUB(h, ldir, np->prdir); |
153 |
|
dtmp = DOT(h,h); |
154 |
|
if (dtmp > FTINY*FTINY) { |
155 |
|
dtmp1 = DOT(h,np->pnorm); |
176 |
|
} |
177 |
|
|
178 |
|
|
179 |
< |
extern int |
179 |
> |
int |
180 |
|
m_aniso( /* shade ray that hit something anisotropic */ |
181 |
< |
register OBJREC *m, |
182 |
< |
register RAY *r |
181 |
> |
OBJREC *m, |
182 |
> |
RAY *r |
183 |
|
) |
184 |
|
{ |
185 |
|
ANISODAT nd; |
186 |
|
COLOR ctmp; |
187 |
< |
register int i; |
187 |
> |
int i; |
188 |
|
/* easy shadow test */ |
189 |
|
if (r->crtype & SHADOW) |
190 |
|
return(1); |
193 |
|
objerror(m, USER, "bad number of real arguments"); |
194 |
|
/* check for back side */ |
195 |
|
if (r->rod < 0.0) { |
196 |
< |
if (!backvis && m->otype != MAT_TRANS2) { |
196 |
> |
if (!backvis) { |
197 |
|
raytrans(r); |
198 |
|
return(1); |
199 |
|
} |
211 |
|
nd.specfl = 0; |
212 |
|
nd.u_alpha = m->oargs.farg[4]; |
213 |
|
nd.v_alpha = m->oargs.farg[5]; |
214 |
< |
if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY) |
214 |
> |
if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY)) |
215 |
|
objerror(m, USER, "roughness too small"); |
216 |
|
|
217 |
|
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ |
231 |
|
if (specthresh >= nd.rspec-FTINY) |
232 |
|
nd.specfl |= SP_RBLT; |
233 |
|
/* compute refl. direction */ |
234 |
< |
for (i = 0; i < 3; i++) |
240 |
< |
nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i]; |
234 |
> |
VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.0*nd.pdot); |
235 |
|
if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */ |
236 |
< |
for (i = 0; i < 3; i++) /* safety measure */ |
243 |
< |
nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; |
236 |
> |
VSUM(nd.vrefl, r->rdir, r->ron, 2.0*r->rod); |
237 |
|
} |
238 |
|
/* compute transmission */ |
239 |
|
if (m->otype == MAT_TRANS2) { |
265 |
|
if (r->ro != NULL && isflat(r->ro->otype)) |
266 |
|
nd.specfl |= SP_FLAT; |
267 |
|
|
268 |
< |
getacoords(r, &nd); /* set up coordinates */ |
268 |
> |
getacoords(&nd); /* set up coordinates */ |
269 |
|
|
270 |
< |
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU)) |
271 |
< |
agaussamp(r, &nd); |
270 |
> |
if (nd.specfl & (SP_REFL|SP_TRAN)) |
271 |
> |
agaussamp(&nd); |
272 |
|
|
273 |
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
274 |
|
copycolor(ctmp, nd.mcolor); /* modified by material color */ |
275 |
< |
if (nd.specfl & SP_RBLT) |
276 |
< |
scalecolor(ctmp, 1.0-nd.trans); |
277 |
< |
else |
285 |
< |
scalecolor(ctmp, nd.rdiff); |
275 |
> |
scalecolor(ctmp, nd.rdiff); |
276 |
> |
if (nd.specfl & SP_RBLT) /* add in specular as well? */ |
277 |
> |
addcolor(ctmp, nd.scolor); |
278 |
|
multambient(ctmp, r, nd.pnorm); |
279 |
|
addcolor(r->rcol, ctmp); /* add to returned color */ |
280 |
|
} |
303 |
|
|
304 |
|
static void |
305 |
|
getacoords( /* set up coordinate system */ |
306 |
< |
RAY *r, |
315 |
< |
register ANISODAT *np |
306 |
> |
ANISODAT *np |
307 |
|
) |
308 |
|
{ |
309 |
< |
register MFUNC *mf; |
310 |
< |
register int i; |
309 |
> |
MFUNC *mf; |
310 |
> |
int i; |
311 |
|
|
312 |
|
mf = getfunc(np->mp, 3, 0x7, 1); |
313 |
< |
setfunc(np->mp, r); |
313 |
> |
setfunc(np->mp, np->rp); |
314 |
|
errno = 0; |
315 |
|
for (i = 0; i < 3; i++) |
316 |
|
np->u[i] = evalue(mf->ep[i]); |
317 |
< |
if (errno == EDOM || errno == ERANGE) { |
318 |
< |
objerror(np->mp, WARNING, "compute error"); |
319 |
< |
np->specfl |= SP_BADU; |
320 |
< |
return; |
330 |
< |
} |
331 |
< |
if (mf->f != &unitxf) |
332 |
< |
multv3(np->u, np->u, mf->f->xfm); |
317 |
> |
if ((errno == EDOM) | (errno == ERANGE)) |
318 |
> |
np->u[0] = np->u[1] = np->u[2] = 0.0; |
319 |
> |
if (mf->fxp != &unitxf) |
320 |
> |
multv3(np->u, np->u, mf->fxp->xfm); |
321 |
|
fcross(np->v, np->pnorm, np->u); |
322 |
|
if (normalize(np->v) == 0.0) { |
323 |
< |
objerror(np->mp, WARNING, "illegal orientation vector"); |
324 |
< |
np->specfl |= SP_BADU; |
325 |
< |
return; |
326 |
< |
} |
327 |
< |
fcross(np->u, np->v, np->pnorm); |
323 |
> |
if (fabs(np->u_alpha - np->v_alpha) > 0.001) |
324 |
> |
objerror(np->mp, WARNING, "illegal orientation vector"); |
325 |
> |
getperpendicular(np->u, np->pnorm); /* punting */ |
326 |
> |
fcross(np->v, np->pnorm, np->u); |
327 |
> |
np->u_alpha = np->v_alpha = sqrt( 0.5 * |
328 |
> |
(np->u_alpha*np->u_alpha + np->v_alpha*np->v_alpha) ); |
329 |
> |
} else |
330 |
> |
fcross(np->u, np->v, np->pnorm); |
331 |
|
} |
332 |
|
|
333 |
|
|
334 |
|
static void |
335 |
|
agaussamp( /* sample anisotropic Gaussian specular */ |
336 |
< |
RAY *r, |
346 |
< |
register ANISODAT *np |
336 |
> |
ANISODAT *np |
337 |
|
) |
338 |
|
{ |
339 |
|
RAY sr; |
340 |
|
FVECT h; |
341 |
|
double rv[2]; |
342 |
|
double d, sinp, cosp; |
343 |
< |
int niter; |
344 |
< |
register int i; |
343 |
> |
COLOR scol; |
344 |
> |
int maxiter, ntrials, nstarget, nstaken; |
345 |
> |
int i; |
346 |
|
/* compute reflection */ |
347 |
|
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
348 |
< |
rayorigin(&sr, SPECULAR, r, np->scolor) == 0) { |
349 |
< |
dimlist[ndims++] = (int)np->mp; |
350 |
< |
for (niter = 0; niter < MAXITER; niter++) { |
351 |
< |
if (niter) |
348 |
> |
rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) { |
349 |
> |
nstarget = 1; |
350 |
> |
if (specjitter > 1.5) { /* multiple samples? */ |
351 |
> |
nstarget = specjitter*np->rp->rweight + .5; |
352 |
> |
if (sr.rweight <= minweight*nstarget) |
353 |
> |
nstarget = sr.rweight/minweight; |
354 |
> |
if (nstarget > 1) { |
355 |
> |
d = 1./nstarget; |
356 |
> |
scalecolor(sr.rcoef, d); |
357 |
> |
sr.rweight *= d; |
358 |
> |
} else |
359 |
> |
nstarget = 1; |
360 |
> |
} |
361 |
> |
setcolor(scol, 0., 0., 0.); |
362 |
> |
dimlist[ndims++] = (int)(size_t)np->mp; |
363 |
> |
maxiter = MAXITER*nstarget; |
364 |
> |
for (nstaken = ntrials = 0; nstaken < nstarget && |
365 |
> |
ntrials < maxiter; ntrials++) { |
366 |
> |
if (ntrials) |
367 |
|
d = frandom(); |
368 |
|
else |
369 |
|
d = urand(ilhash(dimlist,ndims)+samplendx); |
371 |
|
d = 2.0*PI * rv[0]; |
372 |
|
cosp = tcos(d) * np->u_alpha; |
373 |
|
sinp = tsin(d) * np->v_alpha; |
374 |
< |
d = sqrt(cosp*cosp + sinp*sinp); |
375 |
< |
cosp /= d; |
376 |
< |
sinp /= d; |
377 |
< |
rv[1] = 1.0 - specjitter*rv[1]; |
374 |
> |
d = 1./sqrt(cosp*cosp + sinp*sinp); |
375 |
> |
cosp *= d; |
376 |
> |
sinp *= d; |
377 |
> |
if ((0. <= specjitter) & (specjitter < 1.)) |
378 |
> |
rv[1] = 1.0 - specjitter*rv[1]; |
379 |
|
if (rv[1] <= FTINY) |
380 |
|
d = 1.0; |
381 |
|
else |
385 |
|
for (i = 0; i < 3; i++) |
386 |
|
h[i] = np->pnorm[i] + |
387 |
|
d*(cosp*np->u[i] + sinp*np->v[i]); |
388 |
< |
d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); |
389 |
< |
for (i = 0; i < 3; i++) |
390 |
< |
sr.rdir[i] = r->rdir[i] + d*h[i]; |
391 |
< |
if (DOT(sr.rdir, r->ron) > FTINY) { |
392 |
< |
checknorm(sr.rdir); |
388 |
> |
d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d); |
389 |
> |
VSUM(sr.rdir, np->rp->rdir, h, d); |
390 |
> |
/* sample rejection test */ |
391 |
> |
if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY) |
392 |
> |
continue; |
393 |
> |
checknorm(sr.rdir); |
394 |
> |
if (nstarget > 1) { /* W-G-M-D adjustment */ |
395 |
> |
if (nstaken) rayclear(&sr); |
396 |
|
rayvalue(&sr); |
397 |
+ |
d = 2./(1. + np->rp->rod/d); |
398 |
+ |
scalecolor(sr.rcol, d); |
399 |
+ |
addcolor(scol, sr.rcol); |
400 |
+ |
} else { |
401 |
+ |
rayvalue(&sr); |
402 |
|
multcolor(sr.rcol, sr.rcoef); |
403 |
< |
addcolor(r->rcol, sr.rcol); |
389 |
< |
break; |
403 |
> |
addcolor(np->rp->rcol, sr.rcol); |
404 |
|
} |
405 |
+ |
++nstaken; |
406 |
|
} |
407 |
+ |
if (nstarget > 1) { /* final W-G-M-D weighting */ |
408 |
+ |
multcolor(scol, sr.rcoef); |
409 |
+ |
d = (double)nstarget/ntrials; |
410 |
+ |
scalecolor(scol, d); |
411 |
+ |
addcolor(np->rp->rcol, scol); |
412 |
+ |
} |
413 |
|
ndims--; |
414 |
|
} |
415 |
|
/* compute transmission */ |
416 |
|
copycolor(sr.rcoef, np->mcolor); /* modify by material color */ |
417 |
|
scalecolor(sr.rcoef, np->tspec); |
418 |
|
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
419 |
< |
rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) { |
420 |
< |
dimlist[ndims++] = (int)np->mp; |
421 |
< |
for (niter = 0; niter < MAXITER; niter++) { |
422 |
< |
if (niter) |
419 |
> |
rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) { |
420 |
> |
nstarget = 1; |
421 |
> |
if (specjitter > 1.5) { /* multiple samples? */ |
422 |
> |
nstarget = specjitter*np->rp->rweight + .5; |
423 |
> |
if (sr.rweight <= minweight*nstarget) |
424 |
> |
nstarget = sr.rweight/minweight; |
425 |
> |
if (nstarget > 1) { |
426 |
> |
d = 1./nstarget; |
427 |
> |
scalecolor(sr.rcoef, d); |
428 |
> |
sr.rweight *= d; |
429 |
> |
} else |
430 |
> |
nstarget = 1; |
431 |
> |
} |
432 |
> |
dimlist[ndims++] = (int)(size_t)np->mp; |
433 |
> |
maxiter = MAXITER*nstarget; |
434 |
> |
for (nstaken = ntrials = 0; nstaken < nstarget && |
435 |
> |
ntrials < maxiter; ntrials++) { |
436 |
> |
if (ntrials) |
437 |
|
d = frandom(); |
438 |
|
else |
439 |
|
d = urand(ilhash(dimlist,ndims)+1823+samplendx); |
441 |
|
d = 2.0*PI * rv[0]; |
442 |
|
cosp = tcos(d) * np->u_alpha; |
443 |
|
sinp = tsin(d) * np->v_alpha; |
444 |
< |
d = sqrt(cosp*cosp + sinp*sinp); |
445 |
< |
cosp /= d; |
446 |
< |
sinp /= d; |
447 |
< |
rv[1] = 1.0 - specjitter*rv[1]; |
444 |
> |
d = 1./sqrt(cosp*cosp + sinp*sinp); |
445 |
> |
cosp *= d; |
446 |
> |
sinp *= d; |
447 |
> |
if ((0. <= specjitter) & (specjitter < 1.)) |
448 |
> |
rv[1] = 1.0 - specjitter*rv[1]; |
449 |
|
if (rv[1] <= FTINY) |
450 |
|
d = 1.0; |
451 |
|
else |
455 |
|
for (i = 0; i < 3; i++) |
456 |
|
sr.rdir[i] = np->prdir[i] + |
457 |
|
d*(cosp*np->u[i] + sinp*np->v[i]); |
458 |
< |
if (DOT(sr.rdir, r->ron) < -FTINY) { |
459 |
< |
normalize(sr.rdir); /* OK, normalize */ |
460 |
< |
rayvalue(&sr); |
461 |
< |
multcolor(sr.rcol, sr.rcoef); |
462 |
< |
addcolor(r->rcol, sr.rcol); |
463 |
< |
break; |
464 |
< |
} |
458 |
> |
if (DOT(sr.rdir, np->rp->ron) >= -FTINY) |
459 |
> |
continue; |
460 |
> |
normalize(sr.rdir); /* OK, normalize */ |
461 |
> |
if (nstaken) /* multi-sampling */ |
462 |
> |
rayclear(&sr); |
463 |
> |
rayvalue(&sr); |
464 |
> |
multcolor(sr.rcol, sr.rcoef); |
465 |
> |
addcolor(np->rp->rcol, sr.rcol); |
466 |
> |
++nstaken; |
467 |
|
} |
468 |
|
ndims--; |
469 |
|
} |