--- ray/src/rt/aniso.c 2012/06/09 07:16:47 2.53 +++ ray/src/rt/aniso.c 2012/07/29 21:56:16 2.55 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: aniso.c,v 2.53 2012/06/09 07:16:47 greg Exp $"; +static const char RCSid[] = "$Id: aniso.c,v 2.55 2012/07/29 21:56:16 greg Exp $"; #endif /* * Shading functions for anisotropic materials. @@ -21,14 +21,15 @@ static const char RCSid[] = "$Id: aniso.c,v 2.53 2012/ /* * This routine implements the anisotropic Gaussian - * model described by Ward in Siggraph `92 article. + * model described by Ward in Siggraph `92 article, updated with + * normalization and sampling adjustments due to Geisler-Moroder and Duer. * We orient the surface towards the incoming ray, so a single * surface can be used to represent an infinitely thin object. * * Arguments for MAT_PLASTIC2 and MAT_METAL2 are: * 4+ ux uy uz funcfile [transform...] * 0 - * 6 red grn blu specular-frac. u-facet-slope v-facet-slope + * 6 red grn blu specular-frac. u-rough v-rough * * Real arguments for MAT_TRANS2 are: * 8 red grn blu rspec u-rough v-rough trans tspec @@ -60,20 +61,19 @@ typedef struct { double pdot; /* perturbed dot product */ } ANISODAT; /* anisotropic material data */ -static srcdirf_t diraniso; -static void getacoords(RAY *r, ANISODAT *np); -static void agaussamp(RAY *r, ANISODAT *np); +static void getacoords(ANISODAT *np); +static void agaussamp(ANISODAT *np); static void diraniso( /* compute source contribution */ COLOR cval, /* returned coefficient */ - void *nnp, /* material data */ + void *nnp, /* material data */ FVECT ldir, /* light source direction */ double omega /* light source size */ ) { - register ANISODAT *np = nnp; + ANISODAT *np = nnp; double ldot; double dtmp, dtmp1, dtmp2; FVECT h; @@ -87,7 +87,7 @@ diraniso( /* compute source contribution */ if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) return; /* wrong side */ - if (ldot > FTINY && np->rdiff > FTINY) { + if ((ldot > FTINY) & (np->rdiff > FTINY)) { /* * Compute and add diffuse reflected component to returned * color. The diffuse reflected component will always be @@ -111,9 +111,7 @@ diraniso( /* compute source contribution */ au2 += np->u_alpha*np->u_alpha; av2 += np->v_alpha*np->v_alpha; /* half vector */ - h[0] = ldir[0] - np->rp->rdir[0]; - h[1] = ldir[1] - np->rp->rdir[1]; - h[2] = ldir[2] - np->rp->rdir[2]; + VSUB(h, ldir, np->rp->rdir); /* ellipse */ dtmp1 = DOT(np->u, h); dtmp1 *= dtmp1 / au2; @@ -133,7 +131,7 @@ diraniso( /* compute source contribution */ addcolor(cval, ctmp); } } - if (ldot < -FTINY && np->tdiff > FTINY) { + if ((ldot < -FTINY) & (np->tdiff > FTINY)) { /* * Compute diffuse transmission. */ @@ -152,9 +150,7 @@ diraniso( /* compute source contribution */ au2 += np->u_alpha*np->u_alpha; av2 += np->v_alpha*np->v_alpha; /* "half vector" */ - h[0] = ldir[0] - np->prdir[0]; - h[1] = ldir[1] - np->prdir[1]; - h[2] = ldir[2] - np->prdir[2]; + VSUB(h, ldir, np->prdir); dtmp = DOT(h,h); if (dtmp > FTINY*FTINY) { dtmp1 = DOT(h,np->pnorm); @@ -181,15 +177,15 @@ diraniso( /* compute source contribution */ } -extern int +int m_aniso( /* shade ray that hit something anisotropic */ - register OBJREC *m, - register RAY *r + OBJREC *m, + RAY *r ) { ANISODAT nd; COLOR ctmp; - register int i; + int i; /* easy shadow test */ if (r->crtype & SHADOW) return(1); @@ -216,7 +212,7 @@ m_aniso( /* shade ray that hit something anisotropic nd.specfl = 0; nd.u_alpha = m->oargs.farg[4]; nd.v_alpha = m->oargs.farg[5]; - if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY) + if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY)) objerror(m, USER, "roughness too small"); nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ @@ -270,10 +266,10 @@ m_aniso( /* shade ray that hit something anisotropic if (r->ro != NULL && isflat(r->ro->otype)) nd.specfl |= SP_FLAT; - getacoords(r, &nd); /* set up coordinates */ + getacoords(&nd); /* set up coordinates */ if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU)) - agaussamp(r, &nd); + agaussamp(&nd); if (nd.rdiff > FTINY) { /* ambient from this side */ copycolor(ctmp, nd.mcolor); /* modified by material color */ @@ -308,19 +304,18 @@ m_aniso( /* shade ray that hit something anisotropic static void getacoords( /* set up coordinate system */ - RAY *r, - register ANISODAT *np + ANISODAT *np ) { - register MFUNC *mf; - register int i; + MFUNC *mf; + int i; mf = getfunc(np->mp, 3, 0x7, 1); - setfunc(np->mp, r); + setfunc(np->mp, np->rp); errno = 0; for (i = 0; i < 3; i++) np->u[i] = evalue(mf->ep[i]); - if (errno == EDOM || errno == ERANGE) { + if ((errno == EDOM) | (errno == ERANGE)) { objerror(np->mp, WARNING, "compute error"); np->specfl |= SP_BADU; return; @@ -339,8 +334,7 @@ getacoords( /* set up coordinate system */ static void agaussamp( /* sample anisotropic Gaussian specular */ - RAY *r, - register ANISODAT *np + ANISODAT *np ) { RAY sr; @@ -349,13 +343,13 @@ agaussamp( /* sample anisotropic Gaussian specular */ double d, sinp, cosp; COLOR scol; int maxiter, ntrials, nstarget, nstaken; - register int i; + int i; /* compute reflection */ if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && - rayorigin(&sr, SPECULAR, r, np->scolor) == 0) { + rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) { nstarget = 1; if (specjitter > 1.5) { /* multiple samples? */ - nstarget = specjitter*r->rweight + .5; + nstarget = specjitter*np->rp->rweight + .5; if (sr.rweight <= minweight*nstarget) nstarget = sr.rweight/minweight; if (nstarget > 1) { @@ -392,22 +386,22 @@ agaussamp( /* sample anisotropic Gaussian specular */ for (i = 0; i < 3; i++) h[i] = np->pnorm[i] + d*(cosp*np->u[i] + sinp*np->v[i]); - d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); - VSUM(sr.rdir, r->rdir, h, d); + d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d); + VSUM(sr.rdir, np->rp->rdir, h, d); /* sample rejection test */ - if ((d = DOT(sr.rdir, r->ron)) <= FTINY) + if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY) continue; checknorm(sr.rdir); if (nstarget > 1) { /* W-G-M-D adjustment */ if (nstaken) rayclear(&sr); rayvalue(&sr); - d = 2./(1. + r->rod/d); + d = 2./(1. + np->rp->rod/d); scalecolor(sr.rcol, d); addcolor(scol, sr.rcol); } else { rayvalue(&sr); multcolor(sr.rcol, sr.rcoef); - addcolor(r->rcol, sr.rcol); + addcolor(np->rp->rcol, sr.rcol); } ++nstaken; } @@ -415,7 +409,7 @@ agaussamp( /* sample anisotropic Gaussian specular */ multcolor(scol, sr.rcoef); d = (double)nstarget/ntrials; scalecolor(scol, d); - addcolor(r->rcol, scol); + addcolor(np->rp->rcol, scol); } ndims--; } @@ -423,10 +417,10 @@ agaussamp( /* sample anisotropic Gaussian specular */ copycolor(sr.rcoef, np->mcolor); /* modify by material color */ scalecolor(sr.rcoef, np->tspec); if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && - rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) { + rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) { nstarget = 1; if (specjitter > 1.5) { /* multiple samples? */ - nstarget = specjitter*r->rweight + .5; + nstarget = specjitter*np->rp->rweight + .5; if (sr.rweight <= minweight*nstarget) nstarget = sr.rweight/minweight; if (nstarget > 1) { @@ -462,14 +456,14 @@ agaussamp( /* sample anisotropic Gaussian specular */ for (i = 0; i < 3; i++) sr.rdir[i] = np->prdir[i] + d*(cosp*np->u[i] + sinp*np->v[i]); - if (DOT(sr.rdir, r->ron) >= -FTINY) + if (DOT(sr.rdir, np->rp->ron) >= -FTINY) continue; normalize(sr.rdir); /* OK, normalize */ if (nstaken) /* multi-sampling */ rayclear(&sr); rayvalue(&sr); multcolor(sr.rcol, sr.rcoef); - addcolor(r->rcol, sr.rcol); + addcolor(np->rp->rcol, sr.rcol); ++nstaken; } ndims--;