--- ray/src/rt/aniso.c 1993/11/18 09:42:55 2.26 +++ ray/src/rt/aniso.c 2012/06/09 07:16:47 2.53 @@ -1,26 +1,24 @@ -/* Copyright (c) 1992 Regents of the University of California */ - #ifndef lint -static char SCCSid[] = "$SunId$ LBL"; +static const char RCSid[] = "$Id: aniso.c,v 2.53 2012/06/09 07:16:47 greg Exp $"; #endif - /* * Shading functions for anisotropic materials. */ -#include "ray.h" +#include "copyright.h" +#include "ray.h" +#include "ambient.h" #include "otypes.h" - +#include "rtotypes.h" +#include "source.h" #include "func.h" - #include "random.h" -extern double specthresh; /* specular sampling threshold */ -extern double specjitter; /* specular sampling jitter */ +#ifndef MAXITER +#define MAXITER 10 /* maximum # specular ray attempts */ +#endif -static agaussamp(), getacoords(); - /* * This routine implements the anisotropic Gaussian * model described by Ward in Siggraph `92 article. @@ -62,13 +60,20 @@ typedef struct { double pdot; /* perturbed dot product */ } ANISODAT; /* anisotropic material data */ +static srcdirf_t diraniso; +static void getacoords(RAY *r, ANISODAT *np); +static void agaussamp(RAY *r, ANISODAT *np); -diraniso(cval, np, ldir, omega) /* compute source contribution */ -COLOR cval; /* returned coefficient */ -register ANISODAT *np; /* material data */ -FVECT ldir; /* light source direction */ -double omega; /* light source size */ + +static void +diraniso( /* compute source contribution */ + COLOR cval, /* returned coefficient */ + void *nnp, /* material data */ + FVECT ldir, /* light source direction */ + double omega /* light source size */ +) { + register ANISODAT *np = nnp; double ldot; double dtmp, dtmp1, dtmp2; FVECT h; @@ -89,18 +94,18 @@ double omega; /* light source size */ * modified by the color of the material. */ copycolor(ctmp, np->mcolor); - dtmp = ldot * omega * np->rdiff / PI; + dtmp = ldot * omega * np->rdiff * (1.0/PI); scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) { /* * Compute specular reflection coefficient using - * anisotropic gaussian distribution model. + * anisotropic Gaussian distribution model. */ /* add source width if flat */ if (np->specfl & SP_FLAT) - au2 = av2 = omega/(4.0*PI); + au2 = av2 = omega * (0.25/PI); else au2 = av2 = 0.0; au2 += np->u_alpha*np->u_alpha; @@ -114,15 +119,16 @@ double omega; /* light source size */ dtmp1 *= dtmp1 / au2; dtmp2 = DOT(np->v, h); dtmp2 *= dtmp2 / av2; - /* gaussian */ + /* new W-G-M-D model */ dtmp = DOT(np->pnorm, h); - dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp); - dtmp = exp(-dtmp) * (0.25/PI) - * sqrt(ldot/(np->pdot*au2*av2)); + dtmp *= dtmp; + dtmp1 = (dtmp1 + dtmp2) / dtmp; + dtmp = exp(-dtmp1) * DOT(h,h) / + (PI * dtmp*dtmp * sqrt(au2*av2)); /* worth using? */ if (dtmp > FTINY) { copycolor(ctmp, np->scolor); - dtmp *= omega; + dtmp *= ldot * omega; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } @@ -132,7 +138,7 @@ double omega; /* light source size */ * Compute diffuse transmission. */ copycolor(ctmp, np->mcolor); - dtmp = -ldot * omega * np->tdiff / PI; + dtmp = -ldot * omega * np->tdiff * (1.0/PI); scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } @@ -142,7 +148,7 @@ double omega; /* light source size */ * is always modified by material color. */ /* roughness + source */ - au2 = av2 = omega / PI; + au2 = av2 = omega * (1.0/PI); au2 += np->u_alpha*np->u_alpha; av2 += np->v_alpha*np->v_alpha; /* "half vector" */ @@ -162,9 +168,8 @@ double omega; /* light source size */ } } else dtmp = 0.0; - /* gaussian */ - dtmp = exp(-dtmp) * (1.0/PI) - * sqrt(-ldot/(np->pdot*au2*av2)); + /* Gaussian */ + dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2)); /* worth using? */ if (dtmp > FTINY) { copycolor(ctmp, np->mcolor); @@ -176,22 +181,34 @@ double omega; /* light source size */ } -m_aniso(m, r) /* shade ray that hit something anisotropic */ -register OBJREC *m; -register RAY *r; +extern int +m_aniso( /* shade ray that hit something anisotropic */ + register OBJREC *m, + register RAY *r +) { ANISODAT nd; COLOR ctmp; register int i; /* easy shadow test */ if (r->crtype & SHADOW) - return; + return(1); if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6)) objerror(m, USER, "bad number of real arguments"); + /* check for back side */ + if (r->rod < 0.0) { + if (!backvis && m->otype != MAT_TRANS2) { + raytrans(r); + return(1); + } + raytexture(r, m->omod); + flipsurface(r); /* reorient if backvis */ + } else + raytexture(r, m->omod); + /* get material color */ nd.mp = m; nd.rp = r; - /* get material color */ setcolor(nd.mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]); @@ -199,13 +216,9 @@ register RAY *r; nd.specfl = 0; nd.u_alpha = m->oargs.farg[4]; nd.v_alpha = m->oargs.farg[5]; - if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY) + if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY) objerror(m, USER, "roughness too small"); - /* reorient if necessary */ - if (r->rod < 0.0) - flipsurface(r); - /* get modifiers */ - raytexture(r, m->omod); + nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ if (nd.pdot < .001) nd.pdot = .001; /* non-zero for diraniso() */ @@ -223,11 +236,9 @@ register RAY *r; if (specthresh >= nd.rspec-FTINY) nd.specfl |= SP_RBLT; /* compute refl. direction */ - for (i = 0; i < 3; i++) - nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i]; + VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.0*nd.pdot); if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */ - for (i = 0; i < 3; i++) /* safety measure */ - nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; + VSUM(nd.vrefl, r->rdir, r->ron, 2.0*r->rod); } /* compute transmission */ if (m->otype == MAT_TRANS2) { @@ -256,8 +267,7 @@ register RAY *r; /* diffuse reflection */ nd.rdiff = 1.0 - nd.trans - nd.rspec; - if (r->ro != NULL && (r->ro->otype == OBJ_FACE || - r->ro->otype == OBJ_RING)) + if (r->ro != NULL && isflat(r->ro->otype)) nd.specfl |= SP_FLAT; getacoords(r, &nd); /* set up coordinates */ @@ -266,34 +276,41 @@ register RAY *r; agaussamp(r, &nd); if (nd.rdiff > FTINY) { /* ambient from this side */ - ambient(ctmp, r); - if (nd.specfl & SP_RBLT) - scalecolor(ctmp, 1.0-nd.trans); - else - scalecolor(ctmp, nd.rdiff); - multcolor(ctmp, nd.mcolor); /* modified by material color */ + copycolor(ctmp, nd.mcolor); /* modified by material color */ + scalecolor(ctmp, nd.rdiff); + if (nd.specfl & SP_RBLT) /* add in specular as well? */ + addcolor(ctmp, nd.scolor); + multambient(ctmp, r, nd.pnorm); addcolor(r->rcol, ctmp); /* add to returned color */ } if (nd.tdiff > FTINY) { /* ambient from other side */ + FVECT bnorm; + flipsurface(r); - ambient(ctmp, r); + bnorm[0] = -nd.pnorm[0]; + bnorm[1] = -nd.pnorm[1]; + bnorm[2] = -nd.pnorm[2]; + copycolor(ctmp, nd.mcolor); /* modified by color */ if (nd.specfl & SP_TBLT) scalecolor(ctmp, nd.trans); else scalecolor(ctmp, nd.tdiff); - multcolor(ctmp, nd.mcolor); /* modified by color */ + multambient(ctmp, r, bnorm); addcolor(r->rcol, ctmp); flipsurface(r); } /* add direct component */ direct(r, diraniso, &nd); + + return(1); } -static -getacoords(r, np) /* set up coordinate system */ -RAY *r; -register ANISODAT *np; +static void +getacoords( /* set up coordinate system */ + RAY *r, + register ANISODAT *np +) { register MFUNC *mf; register int i; @@ -303,13 +320,13 @@ register ANISODAT *np; errno = 0; for (i = 0; i < 3; i++) np->u[i] = evalue(mf->ep[i]); - if (errno) { + if (errno == EDOM || errno == ERANGE) { objerror(np->mp, WARNING, "compute error"); np->specfl |= SP_BADU; return; } - if (mf->f != &unitxf) - multv3(np->u, np->u, mf->f->xfm); + if (mf->fxp != &unitxf) + multv3(np->u, np->u, mf->fxp->xfm); fcross(np->v, np->pnorm, np->u); if (normalize(np->v) == 0.0) { objerror(np->mp, WARNING, "illegal orientation vector"); @@ -320,78 +337,141 @@ register ANISODAT *np; } -static -agaussamp(r, np) /* sample anisotropic gaussian specular */ -RAY *r; -register ANISODAT *np; +static void +agaussamp( /* sample anisotropic Gaussian specular */ + RAY *r, + register ANISODAT *np +) { RAY sr; FVECT h; double rv[2]; double d, sinp, cosp; + COLOR scol; + int maxiter, ntrials, nstarget, nstaken; register int i; /* compute reflection */ if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && - rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { - dimlist[ndims++] = (int)np->mp; - d = urand(ilhash(dimlist,ndims)+samplendx); - multisamp(rv, 2, d); - d = 2.0*PI * rv[0]; - cosp = cos(d) * np->u_alpha; - sinp = sin(d) * np->v_alpha; - d = sqrt(cosp*cosp + sinp*sinp); - cosp /= d; - sinp /= d; - rv[1] = 1.0 - specjitter*rv[1]; - if (rv[1] <= FTINY) - d = 1.0; - else - d = sqrt(-log(rv[1]) / - (cosp*cosp/(np->u_alpha*np->u_alpha) + - sinp*sinp/(np->v_alpha*np->v_alpha))); - for (i = 0; i < 3; i++) - h[i] = np->pnorm[i] + - d*(cosp*np->u[i] + sinp*np->v[i]); - d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); - for (i = 0; i < 3; i++) - sr.rdir[i] = r->rdir[i] + d*h[i]; - if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */ - VCOPY(sr.rdir, np->vrefl); /* jitter no good */ - rayvalue(&sr); - multcolor(sr.rcol, np->scolor); - addcolor(r->rcol, sr.rcol); + rayorigin(&sr, SPECULAR, r, np->scolor) == 0) { + nstarget = 1; + if (specjitter > 1.5) { /* multiple samples? */ + nstarget = specjitter*r->rweight + .5; + if (sr.rweight <= minweight*nstarget) + nstarget = sr.rweight/minweight; + if (nstarget > 1) { + d = 1./nstarget; + scalecolor(sr.rcoef, d); + sr.rweight *= d; + } else + nstarget = 1; + } + setcolor(scol, 0., 0., 0.); + dimlist[ndims++] = (int)(size_t)np->mp; + maxiter = MAXITER*nstarget; + for (nstaken = ntrials = 0; nstaken < nstarget && + ntrials < maxiter; ntrials++) { + if (ntrials) + d = frandom(); + else + d = urand(ilhash(dimlist,ndims)+samplendx); + multisamp(rv, 2, d); + d = 2.0*PI * rv[0]; + cosp = tcos(d) * np->u_alpha; + sinp = tsin(d) * np->v_alpha; + d = 1./sqrt(cosp*cosp + sinp*sinp); + cosp *= d; + sinp *= d; + if ((0. <= specjitter) & (specjitter < 1.)) + rv[1] = 1.0 - specjitter*rv[1]; + if (rv[1] <= FTINY) + d = 1.0; + else + d = sqrt(-log(rv[1]) / + (cosp*cosp/(np->u_alpha*np->u_alpha) + + sinp*sinp/(np->v_alpha*np->v_alpha))); + for (i = 0; i < 3; i++) + h[i] = np->pnorm[i] + + d*(cosp*np->u[i] + sinp*np->v[i]); + d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); + VSUM(sr.rdir, r->rdir, h, d); + /* sample rejection test */ + if ((d = DOT(sr.rdir, r->ron)) <= FTINY) + continue; + checknorm(sr.rdir); + if (nstarget > 1) { /* W-G-M-D adjustment */ + if (nstaken) rayclear(&sr); + rayvalue(&sr); + d = 2./(1. + r->rod/d); + scalecolor(sr.rcol, d); + addcolor(scol, sr.rcol); + } else { + rayvalue(&sr); + multcolor(sr.rcol, sr.rcoef); + addcolor(r->rcol, sr.rcol); + } + ++nstaken; + } + if (nstarget > 1) { /* final W-G-M-D weighting */ + multcolor(scol, sr.rcoef); + d = (double)nstarget/ntrials; + scalecolor(scol, d); + addcolor(r->rcol, scol); + } ndims--; } /* compute transmission */ + copycolor(sr.rcoef, np->mcolor); /* modify by material color */ + scalecolor(sr.rcoef, np->tspec); if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && - rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { - dimlist[ndims++] = (int)np->mp; - d = urand(ilhash(dimlist,ndims)+1823+samplendx); - multisamp(rv, 2, d); - d = 2.0*PI * rv[0]; - cosp = cos(d) * np->u_alpha; - sinp = sin(d) * np->v_alpha; - d = sqrt(cosp*cosp + sinp*sinp); - cosp /= d; - sinp /= d; - rv[1] = 1.0 - specjitter*rv[1]; - if (rv[1] <= FTINY) - d = 1.0; - else - d = sqrt(-log(rv[1]) / - (cosp*cosp/(np->u_alpha*np->u_alpha) + - sinp*sinp/(np->v_alpha*np->u_alpha))); - for (i = 0; i < 3; i++) - sr.rdir[i] = np->prdir[i] + - d*(cosp*np->u[i] + sinp*np->v[i]); - if (DOT(sr.rdir, r->ron) < -FTINY) - normalize(sr.rdir); /* OK, normalize */ - else - VCOPY(sr.rdir, np->prdir); /* else no jitter */ - rayvalue(&sr); - scalecolor(sr.rcol, np->tspec); - multcolor(sr.rcol, np->mcolor); /* modify by color */ - addcolor(r->rcol, sr.rcol); + rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) { + nstarget = 1; + if (specjitter > 1.5) { /* multiple samples? */ + nstarget = specjitter*r->rweight + .5; + if (sr.rweight <= minweight*nstarget) + nstarget = sr.rweight/minweight; + if (nstarget > 1) { + d = 1./nstarget; + scalecolor(sr.rcoef, d); + sr.rweight *= d; + } else + nstarget = 1; + } + dimlist[ndims++] = (int)(size_t)np->mp; + maxiter = MAXITER*nstarget; + for (nstaken = ntrials = 0; nstaken < nstarget && + ntrials < maxiter; ntrials++) { + if (ntrials) + d = frandom(); + else + d = urand(ilhash(dimlist,ndims)+1823+samplendx); + multisamp(rv, 2, d); + d = 2.0*PI * rv[0]; + cosp = tcos(d) * np->u_alpha; + sinp = tsin(d) * np->v_alpha; + d = 1./sqrt(cosp*cosp + sinp*sinp); + cosp *= d; + sinp *= d; + if ((0. <= specjitter) & (specjitter < 1.)) + rv[1] = 1.0 - specjitter*rv[1]; + if (rv[1] <= FTINY) + d = 1.0; + else + d = sqrt(-log(rv[1]) / + (cosp*cosp/(np->u_alpha*np->u_alpha) + + sinp*sinp/(np->v_alpha*np->v_alpha))); + for (i = 0; i < 3; i++) + sr.rdir[i] = np->prdir[i] + + d*(cosp*np->u[i] + sinp*np->v[i]); + if (DOT(sr.rdir, r->ron) >= -FTINY) + continue; + normalize(sr.rdir); /* OK, normalize */ + if (nstaken) /* multi-sampling */ + rayclear(&sr); + rayvalue(&sr); + multcolor(sr.rcol, sr.rcoef); + addcolor(r->rcol, sr.rcol); + ++nstaken; + } ndims--; } }