19 |
|
extern double specthresh; /* specular sampling threshold */ |
20 |
|
extern double specjitter; /* specular sampling jitter */ |
21 |
|
|
22 |
+ |
extern int backvis; /* back faces visible? */ |
23 |
+ |
|
24 |
+ |
static agaussamp(), getacoords(); |
25 |
+ |
|
26 |
|
/* |
27 |
< |
* This anisotropic reflection model uses a variant on the |
28 |
< |
* exponential Gaussian used in normal.c. |
27 |
> |
* This routine implements the anisotropic Gaussian |
28 |
> |
* model described by Ward in Siggraph `92 article. |
29 |
|
* We orient the surface towards the incoming ray, so a single |
30 |
|
* surface can be used to represent an infinitely thin object. |
31 |
|
* |
38 |
|
* 8 red grn blu rspec u-rough v-rough trans tspec |
39 |
|
*/ |
40 |
|
|
37 |
– |
#define BSPEC(m) (6.0) /* specularity parameter b */ |
38 |
– |
|
41 |
|
/* specularity flags */ |
42 |
|
#define SP_REFL 01 /* has reflected specular component */ |
43 |
|
#define SP_TRAN 02 /* has transmitted specular */ |
111 |
|
h[0] = ldir[0] - np->rp->rdir[0]; |
112 |
|
h[1] = ldir[1] - np->rp->rdir[1]; |
113 |
|
h[2] = ldir[2] - np->rp->rdir[2]; |
112 |
– |
normalize(h); |
114 |
|
/* ellipse */ |
115 |
|
dtmp1 = DOT(np->u, h); |
116 |
|
dtmp1 *= dtmp1 / au2; |
117 |
|
dtmp2 = DOT(np->v, h); |
118 |
|
dtmp2 *= dtmp2 / av2; |
119 |
|
/* gaussian */ |
120 |
< |
dtmp = (dtmp1 + dtmp2) / (1.0 + DOT(np->pnorm, h)); |
121 |
< |
dtmp = exp(-2.0*dtmp) * 1.0/(4.0*PI) |
120 |
> |
dtmp = DOT(np->pnorm, h); |
121 |
> |
dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp); |
122 |
> |
dtmp = exp(-dtmp) * (0.25/PI) |
123 |
|
* sqrt(ldot/(np->pdot*au2*av2)); |
124 |
|
/* worth using? */ |
125 |
|
if (dtmp > FTINY) { |
151 |
|
h[0] = ldir[0] - np->prdir[0]; |
152 |
|
h[1] = ldir[1] - np->prdir[1]; |
153 |
|
h[2] = ldir[2] - np->prdir[2]; |
154 |
< |
dtmp = DOT(h,np->pnorm); |
153 |
< |
dtmp = DOT(h,h) - dtmp*dtmp; |
154 |
> |
dtmp = DOT(h,h); |
155 |
|
if (dtmp > FTINY*FTINY) { |
156 |
< |
dtmp1 = DOT(h,np->u); |
157 |
< |
dtmp1 = dtmp1*dtmp1 / (au2*dtmp); |
158 |
< |
dtmp2 = DOT(h,np->v); |
159 |
< |
dtmp2 = dtmp2*dtmp2 / (av2*dtmp); |
160 |
< |
dtmp = 2. - 2.*DOT(ldir,np->prdir); |
161 |
< |
dtmp *= dtmp1 + dtmp2; |
156 |
> |
dtmp1 = DOT(h,np->pnorm); |
157 |
> |
dtmp = 1.0 - dtmp1*dtmp1/dtmp; |
158 |
> |
if (dtmp > FTINY*FTINY) { |
159 |
> |
dtmp1 = DOT(h,np->u); |
160 |
> |
dtmp1 *= dtmp1 / au2; |
161 |
> |
dtmp2 = DOT(h,np->v); |
162 |
> |
dtmp2 *= dtmp2 / av2; |
163 |
> |
dtmp = (dtmp1 + dtmp2) / dtmp; |
164 |
> |
} |
165 |
|
} else |
166 |
|
dtmp = 0.0; |
167 |
|
/* gaussian */ |
168 |
< |
dtmp = exp(-dtmp) * 1.0/(4.0*PI) |
168 |
> |
dtmp = exp(-dtmp) * (1.0/PI) |
169 |
|
* sqrt(-ldot/(np->pdot*au2*av2)); |
170 |
|
/* worth using? */ |
171 |
|
if (dtmp > FTINY) { |
183 |
|
register RAY *r; |
184 |
|
{ |
185 |
|
ANISODAT nd; |
182 |
– |
double dtmp; |
186 |
|
COLOR ctmp; |
187 |
|
register int i; |
188 |
|
/* easy shadow test */ |
189 |
|
if (r->crtype & SHADOW) |
190 |
< |
return; |
190 |
> |
return(1); |
191 |
|
|
192 |
|
if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6)) |
193 |
|
objerror(m, USER, "bad number of real arguments"); |
203 |
|
nd.v_alpha = m->oargs.farg[5]; |
204 |
|
if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY) |
205 |
|
objerror(m, USER, "roughness too small"); |
206 |
< |
/* reorient if necessary */ |
207 |
< |
if (r->rod < 0.0) |
208 |
< |
flipsurface(r); |
206 |
> |
/* check for back side */ |
207 |
> |
if (r->rod < 0.0) { |
208 |
> |
if (!backvis && m->otype != MAT_TRANS2) { |
209 |
> |
raytrans(r); |
210 |
> |
return(1); |
211 |
> |
} |
212 |
> |
flipsurface(r); /* reorient if backvis */ |
213 |
> |
} |
214 |
|
/* get modifiers */ |
215 |
|
raytexture(r, m->omod); |
216 |
|
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ |
226 |
|
else |
227 |
|
setcolor(nd.scolor, 1.0, 1.0, 1.0); |
228 |
|
scalecolor(nd.scolor, nd.rspec); |
221 |
– |
/* improved model */ |
222 |
– |
dtmp = exp(-BSPEC(m)*nd.pdot); |
223 |
– |
for (i = 0; i < 3; i++) |
224 |
– |
colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp; |
225 |
– |
nd.rspec += (1.0-nd.rspec)*dtmp; |
229 |
|
/* check threshold */ |
230 |
< |
if (specthresh > FTINY && |
228 |
< |
(specthresh >= 1.-FTINY || |
229 |
< |
specthresh + .05 - .1*frandom() > nd.rspec)) |
230 |
> |
if (specthresh >= nd.rspec-FTINY) |
231 |
|
nd.specfl |= SP_RBLT; |
232 |
|
/* compute refl. direction */ |
233 |
|
for (i = 0; i < 3; i++) |
244 |
|
if (nd.tspec > FTINY) { |
245 |
|
nd.specfl |= SP_TRAN; |
246 |
|
/* check threshold */ |
247 |
< |
if (specthresh > FTINY && |
247 |
< |
(specthresh >= 1.-FTINY || |
248 |
< |
specthresh + .05 - .1*frandom() > nd.tspec)) |
247 |
> |
if (specthresh >= nd.tspec-FTINY) |
248 |
|
nd.specfl |= SP_TBLT; |
249 |
|
if (DOT(r->pert,r->pert) <= FTINY*FTINY) { |
250 |
|
VCOPY(nd.prdir, r->rdir); |
263 |
|
/* diffuse reflection */ |
264 |
|
nd.rdiff = 1.0 - nd.trans - nd.rspec; |
265 |
|
|
266 |
< |
if (r->ro != NULL && (r->ro->otype == OBJ_FACE || |
268 |
< |
r->ro->otype == OBJ_RING)) |
266 |
> |
if (r->ro != NULL && isflat(r->ro->otype)) |
267 |
|
nd.specfl |= SP_FLAT; |
268 |
|
|
269 |
|
getacoords(r, &nd); /* set up coordinates */ |
272 |
|
agaussamp(r, &nd); |
273 |
|
|
274 |
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
275 |
< |
ambient(ctmp, r); |
275 |
> |
ambient(ctmp, r, nd.pnorm); |
276 |
|
if (nd.specfl & SP_RBLT) |
277 |
|
scalecolor(ctmp, 1.0-nd.trans); |
278 |
|
else |
281 |
|
addcolor(r->rcol, ctmp); /* add to returned color */ |
282 |
|
} |
283 |
|
if (nd.tdiff > FTINY) { /* ambient from other side */ |
284 |
+ |
FVECT bnorm; |
285 |
+ |
|
286 |
|
flipsurface(r); |
287 |
< |
ambient(ctmp, r); |
287 |
> |
bnorm[0] = -nd.pnorm[0]; |
288 |
> |
bnorm[1] = -nd.pnorm[1]; |
289 |
> |
bnorm[2] = -nd.pnorm[2]; |
290 |
> |
ambient(ctmp, r, bnorm); |
291 |
|
if (nd.specfl & SP_TBLT) |
292 |
|
scalecolor(ctmp, nd.trans); |
293 |
|
else |
298 |
|
} |
299 |
|
/* add direct component */ |
300 |
|
direct(r, diraniso, &nd); |
301 |
+ |
|
302 |
+ |
return(1); |
303 |
|
} |
304 |
|
|
305 |
|
|