1 |
– |
/* Copyright (c) 1992 Regents of the University of California */ |
2 |
– |
|
1 |
|
#ifndef lint |
2 |
< |
static char SCCSid[] = "$SunId$ LBL"; |
2 |
> |
static const char RCSid[] = "$Id$"; |
3 |
|
#endif |
6 |
– |
|
4 |
|
/* |
5 |
|
* Shading functions for anisotropic materials. |
6 |
|
*/ |
7 |
|
|
8 |
< |
#include "ray.h" |
8 |
> |
#include "copyright.h" |
9 |
|
|
10 |
+ |
#include "ray.h" |
11 |
+ |
#include "ambient.h" |
12 |
|
#include "otypes.h" |
13 |
< |
|
13 |
> |
#include "rtotypes.h" |
14 |
> |
#include "source.h" |
15 |
|
#include "func.h" |
16 |
– |
|
16 |
|
#include "random.h" |
17 |
+ |
#include "pmapmat.h" |
18 |
|
|
19 |
< |
extern double specthresh; /* specular sampling threshold */ |
20 |
< |
extern double specjitter; /* specular sampling jitter */ |
19 |
> |
#ifndef MAXITER |
20 |
> |
#define MAXITER 10 /* maximum # specular ray attempts */ |
21 |
> |
#endif |
22 |
|
|
23 |
|
/* |
24 |
< |
* This anisotropic reflection model uses a variant on the |
25 |
< |
* exponential Gaussian used in normal.c. |
24 |
> |
* This routine implements the anisotropic Gaussian |
25 |
> |
* model described by Ward in Siggraph `92 article, updated with |
26 |
> |
* normalization and sampling adjustments due to Geisler-Moroder and Duer. |
27 |
|
* We orient the surface towards the incoming ray, so a single |
28 |
|
* surface can be used to represent an infinitely thin object. |
29 |
|
* |
30 |
|
* Arguments for MAT_PLASTIC2 and MAT_METAL2 are: |
31 |
|
* 4+ ux uy uz funcfile [transform...] |
32 |
|
* 0 |
33 |
< |
* 6 red grn blu specular-frac. u-facet-slope v-facet-slope |
33 |
> |
* 6 red grn blu specular-frac. u-rough v-rough |
34 |
|
* |
35 |
|
* Real arguments for MAT_TRANS2 are: |
36 |
|
* 8 red grn blu rspec u-rough v-rough trans tspec |
37 |
|
*/ |
38 |
|
|
37 |
– |
#define BSPEC(m) (6.0) /* specularity parameter b */ |
38 |
– |
|
39 |
|
/* specularity flags */ |
40 |
|
#define SP_REFL 01 /* has reflected specular component */ |
41 |
|
#define SP_TRAN 02 /* has transmitted specular */ |
42 |
|
#define SP_FLAT 04 /* reflecting surface is flat */ |
43 |
|
#define SP_RBLT 010 /* reflection below sample threshold */ |
44 |
|
#define SP_TBLT 020 /* transmission below threshold */ |
45 |
– |
#define SP_BADU 040 /* bad u direction calculation */ |
45 |
|
|
46 |
|
typedef struct { |
47 |
|
OBJREC *mp; /* material pointer */ |
48 |
|
RAY *rp; /* ray pointer */ |
49 |
|
short specfl; /* specularity flags, defined above */ |
50 |
< |
COLOR mcolor; /* color of this material */ |
51 |
< |
COLOR scolor; /* color of specular component */ |
50 |
> |
SCOLOR mcolor; /* color of this material */ |
51 |
> |
SCOLOR scolor; /* color of specular component */ |
52 |
|
FVECT vrefl; /* vector in reflected direction */ |
53 |
|
FVECT prdir; /* vector in transmitted direction */ |
54 |
|
FVECT u, v; /* u and v vectors orienting anisotropy */ |
55 |
< |
double u_alpha2; /* u roughness squared */ |
56 |
< |
double v_alpha2; /* v roughness squared */ |
55 |
> |
double u_alpha; /* u roughness */ |
56 |
> |
double v_alpha; /* v roughness */ |
57 |
|
double rdiff, rspec; /* reflected specular, diffuse */ |
58 |
|
double trans; /* transmissivity */ |
59 |
|
double tdiff, tspec; /* transmitted specular, diffuse */ |
61 |
|
double pdot; /* perturbed dot product */ |
62 |
|
} ANISODAT; /* anisotropic material data */ |
63 |
|
|
64 |
+ |
static void getacoords(ANISODAT *np); |
65 |
+ |
static void agaussamp(ANISODAT *np); |
66 |
|
|
67 |
< |
diraniso(cval, np, ldir, omega) /* compute source contribution */ |
68 |
< |
COLOR cval; /* returned coefficient */ |
69 |
< |
register ANISODAT *np; /* material data */ |
70 |
< |
FVECT ldir; /* light source direction */ |
71 |
< |
double omega; /* light source size */ |
67 |
> |
|
68 |
> |
static void |
69 |
> |
diraniso( /* compute source contribution */ |
70 |
> |
SCOLOR scval, /* returned coefficient */ |
71 |
> |
void *nnp, /* material data */ |
72 |
> |
FVECT ldir, /* light source direction */ |
73 |
> |
double omega /* light source size */ |
74 |
> |
) |
75 |
|
{ |
76 |
+ |
ANISODAT *np = nnp; |
77 |
|
double ldot; |
78 |
|
double dtmp, dtmp1, dtmp2; |
79 |
|
FVECT h; |
80 |
|
double au2, av2; |
81 |
< |
COLOR ctmp; |
81 |
> |
SCOLOR sctmp; |
82 |
|
|
83 |
< |
setcolor(cval, 0.0, 0.0, 0.0); |
83 |
> |
scolorblack(scval); |
84 |
|
|
85 |
|
ldot = DOT(np->pnorm, ldir); |
86 |
|
|
87 |
|
if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) |
88 |
|
return; /* wrong side */ |
89 |
|
|
90 |
< |
if (ldot > FTINY && np->rdiff > FTINY) { |
90 |
> |
if ((ldot > FTINY) & (np->rdiff > FTINY)) { |
91 |
|
/* |
92 |
|
* Compute and add diffuse reflected component to returned |
93 |
|
* color. The diffuse reflected component will always be |
94 |
|
* modified by the color of the material. |
95 |
|
*/ |
96 |
< |
copycolor(ctmp, np->mcolor); |
97 |
< |
dtmp = ldot * omega * np->rdiff / PI; |
98 |
< |
scalecolor(ctmp, dtmp); |
99 |
< |
addcolor(cval, ctmp); |
96 |
> |
copyscolor(sctmp, np->mcolor); |
97 |
> |
dtmp = ldot * omega * np->rdiff * (1.0/PI); |
98 |
> |
scalescolor(sctmp, dtmp); |
99 |
> |
saddscolor(scval, sctmp); |
100 |
|
} |
101 |
< |
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) { |
101 |
> |
|
102 |
> |
if ((ldot < -FTINY) & (np->tdiff > FTINY)) { |
103 |
|
/* |
104 |
+ |
* Compute diffuse transmission. |
105 |
+ |
*/ |
106 |
+ |
copyscolor(sctmp, np->mcolor); |
107 |
+ |
dtmp = -ldot * omega * np->tdiff * (1.0/PI); |
108 |
+ |
scalescolor(sctmp, dtmp); |
109 |
+ |
saddscolor(scval, sctmp); |
110 |
+ |
} |
111 |
+ |
|
112 |
+ |
if (ambRayInPmap(np->rp)) |
113 |
+ |
return; /* specular accounted for in photon map */ |
114 |
+ |
|
115 |
+ |
if (ldot > FTINY && np->specfl&SP_REFL) { |
116 |
+ |
/* |
117 |
|
* Compute specular reflection coefficient using |
118 |
< |
* anisotropic gaussian distribution model. |
118 |
> |
* anisotropic Gaussian distribution model. |
119 |
|
*/ |
120 |
|
/* add source width if flat */ |
121 |
|
if (np->specfl & SP_FLAT) |
122 |
< |
au2 = av2 = omega/(4.0*PI); |
122 |
> |
au2 = av2 = omega * (0.25/PI); |
123 |
|
else |
124 |
|
au2 = av2 = 0.0; |
125 |
< |
au2 += np->u_alpha2; |
126 |
< |
av2 += np->v_alpha2; |
125 |
> |
au2 += np->u_alpha*np->u_alpha; |
126 |
> |
av2 += np->v_alpha*np->v_alpha; |
127 |
|
/* half vector */ |
128 |
< |
h[0] = ldir[0] - np->rp->rdir[0]; |
110 |
< |
h[1] = ldir[1] - np->rp->rdir[1]; |
111 |
< |
h[2] = ldir[2] - np->rp->rdir[2]; |
112 |
< |
normalize(h); |
128 |
> |
VSUB(h, ldir, np->rp->rdir); |
129 |
|
/* ellipse */ |
130 |
|
dtmp1 = DOT(np->u, h); |
131 |
|
dtmp1 *= dtmp1 / au2; |
132 |
|
dtmp2 = DOT(np->v, h); |
133 |
|
dtmp2 *= dtmp2 / av2; |
134 |
< |
/* gaussian */ |
135 |
< |
dtmp = (dtmp1 + dtmp2) / (1.0 + DOT(np->pnorm, h)); |
136 |
< |
dtmp = exp(-2.0*dtmp) * 1.0/(4.0*PI) |
137 |
< |
* sqrt(ldot/(np->pdot*au2*av2)); |
134 |
> |
/* new W-G-M-D model */ |
135 |
> |
dtmp = DOT(np->pnorm, h); |
136 |
> |
dtmp *= dtmp; |
137 |
> |
dtmp1 = (dtmp1 + dtmp2) / dtmp; |
138 |
> |
dtmp = exp(-dtmp1) * DOT(h,h) / |
139 |
> |
(PI * dtmp*dtmp * sqrt(au2*av2)); |
140 |
|
/* worth using? */ |
141 |
|
if (dtmp > FTINY) { |
142 |
< |
copycolor(ctmp, np->scolor); |
143 |
< |
dtmp *= omega; |
144 |
< |
scalecolor(ctmp, dtmp); |
145 |
< |
addcolor(cval, ctmp); |
142 |
> |
copyscolor(sctmp, np->scolor); |
143 |
> |
dtmp *= ldot * omega; |
144 |
> |
scalescolor(sctmp, dtmp); |
145 |
> |
saddscolor(scval, sctmp); |
146 |
|
} |
147 |
|
} |
148 |
< |
if (ldot < -FTINY && np->tdiff > FTINY) { |
148 |
> |
|
149 |
> |
if (ldot < -FTINY && np->specfl&SP_TRAN) { |
150 |
|
/* |
132 |
– |
* Compute diffuse transmission. |
133 |
– |
*/ |
134 |
– |
copycolor(ctmp, np->mcolor); |
135 |
– |
dtmp = -ldot * omega * np->tdiff / PI; |
136 |
– |
scalecolor(ctmp, dtmp); |
137 |
– |
addcolor(cval, ctmp); |
138 |
– |
} |
139 |
– |
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) { |
140 |
– |
/* |
151 |
|
* Compute specular transmission. Specular transmission |
152 |
|
* is always modified by material color. |
153 |
|
*/ |
154 |
|
/* roughness + source */ |
155 |
< |
au2 = av2 = omega / PI; |
156 |
< |
au2 += .25 * np->u_alpha2; |
157 |
< |
av2 += .25 * np->v_alpha2; |
155 |
> |
au2 = av2 = omega * (1.0/PI); |
156 |
> |
au2 += np->u_alpha*np->u_alpha; |
157 |
> |
av2 += np->v_alpha*np->v_alpha; |
158 |
|
/* "half vector" */ |
159 |
< |
h[0] = ldir[0] - np->prdir[0]; |
160 |
< |
h[1] = ldir[1] - np->prdir[1]; |
151 |
< |
h[2] = ldir[2] - np->prdir[2]; |
152 |
< |
dtmp = DOT(h,np->pnorm); |
153 |
< |
dtmp = DOT(h,h) - dtmp*dtmp; |
159 |
> |
VSUB(h, ldir, np->prdir); |
160 |
> |
dtmp = DOT(h,h); |
161 |
|
if (dtmp > FTINY*FTINY) { |
162 |
< |
dtmp1 = DOT(h,np->u); |
163 |
< |
dtmp1 = dtmp1*dtmp1 / (au2*dtmp); |
164 |
< |
dtmp2 = DOT(h,np->v); |
165 |
< |
dtmp2 = dtmp2*dtmp2 / (av2*dtmp); |
166 |
< |
dtmp = 2. - 2.*DOT(ldir,np->prdir); |
167 |
< |
dtmp *= dtmp1 + dtmp2; |
162 |
> |
dtmp1 = DOT(h,np->pnorm); |
163 |
> |
dtmp = 1.0 - dtmp1*dtmp1/dtmp; |
164 |
> |
if (dtmp > FTINY*FTINY) { |
165 |
> |
dtmp1 = DOT(h,np->u); |
166 |
> |
dtmp1 *= dtmp1 / au2; |
167 |
> |
dtmp2 = DOT(h,np->v); |
168 |
> |
dtmp2 *= dtmp2 / av2; |
169 |
> |
dtmp = (dtmp1 + dtmp2) / dtmp; |
170 |
> |
} |
171 |
|
} else |
172 |
|
dtmp = 0.0; |
173 |
< |
/* gaussian */ |
174 |
< |
dtmp = exp(-dtmp) * 1.0/(4.0*PI) |
165 |
< |
* sqrt(-ldot/(np->pdot*au2*av2)); |
173 |
> |
/* Gaussian */ |
174 |
> |
dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2)); |
175 |
|
/* worth using? */ |
176 |
|
if (dtmp > FTINY) { |
177 |
< |
copycolor(ctmp, np->mcolor); |
177 |
> |
copyscolor(sctmp, np->mcolor); |
178 |
|
dtmp *= np->tspec * omega; |
179 |
< |
scalecolor(ctmp, dtmp); |
180 |
< |
addcolor(cval, ctmp); |
179 |
> |
scalescolor(sctmp, dtmp); |
180 |
> |
saddscolor(scval, sctmp); |
181 |
|
} |
182 |
|
} |
183 |
|
} |
184 |
|
|
185 |
|
|
186 |
< |
m_aniso(m, r) /* shade ray that hit something anisotropic */ |
187 |
< |
register OBJREC *m; |
188 |
< |
register RAY *r; |
186 |
> |
int |
187 |
> |
m_aniso( /* shade ray that hit something anisotropic */ |
188 |
> |
OBJREC *m, |
189 |
> |
RAY *r |
190 |
> |
) |
191 |
|
{ |
192 |
|
ANISODAT nd; |
193 |
< |
double dtmp; |
194 |
< |
COLOR ctmp; |
184 |
< |
register int i; |
193 |
> |
SCOLOR sctmp; |
194 |
> |
int i; |
195 |
|
/* easy shadow test */ |
196 |
|
if (r->crtype & SHADOW) |
197 |
< |
return; |
197 |
> |
return(1); |
198 |
|
|
199 |
|
if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6)) |
200 |
|
objerror(m, USER, "bad number of real arguments"); |
201 |
+ |
/* check for back side */ |
202 |
+ |
if (r->rod < 0.0) { |
203 |
+ |
if (!backvis) { |
204 |
+ |
raytrans(r); |
205 |
+ |
return(1); |
206 |
+ |
} |
207 |
+ |
raytexture(r, m->omod); |
208 |
+ |
flipsurface(r); /* reorient if backvis */ |
209 |
+ |
} else |
210 |
+ |
raytexture(r, m->omod); |
211 |
+ |
/* get material color */ |
212 |
|
nd.mp = m; |
213 |
|
nd.rp = r; |
214 |
< |
/* get material color */ |
194 |
< |
setcolor(nd.mcolor, m->oargs.farg[0], |
214 |
> |
setscolor(nd.mcolor, m->oargs.farg[0], |
215 |
|
m->oargs.farg[1], |
216 |
|
m->oargs.farg[2]); |
217 |
|
/* get roughness */ |
218 |
|
nd.specfl = 0; |
219 |
< |
nd.u_alpha2 = m->oargs.farg[4]; |
220 |
< |
nd.u_alpha2 *= nd.u_alpha2; |
221 |
< |
nd.v_alpha2 = m->oargs.farg[5]; |
202 |
< |
nd.v_alpha2 *= nd.v_alpha2; |
203 |
< |
if (nd.u_alpha2 < FTINY*FTINY || nd.v_alpha2 <= FTINY*FTINY) |
219 |
> |
nd.u_alpha = m->oargs.farg[4]; |
220 |
> |
nd.v_alpha = m->oargs.farg[5]; |
221 |
> |
if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY)) |
222 |
|
objerror(m, USER, "roughness too small"); |
223 |
< |
/* reorient if necessary */ |
206 |
< |
if (r->rod < 0.0) |
207 |
< |
flipsurface(r); |
208 |
< |
/* get modifiers */ |
209 |
< |
raytexture(r, m->omod); |
223 |
> |
|
224 |
|
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ |
225 |
|
if (nd.pdot < .001) |
226 |
|
nd.pdot = .001; /* non-zero for diraniso() */ |
227 |
< |
multcolor(nd.mcolor, r->pcol); /* modify material color */ |
227 |
> |
smultscolor(nd.mcolor, r->pcol); /* modify material color */ |
228 |
|
/* get specular component */ |
229 |
|
if ((nd.rspec = m->oargs.farg[3]) > FTINY) { |
230 |
|
nd.specfl |= SP_REFL; |
231 |
|
/* compute specular color */ |
232 |
|
if (m->otype == MAT_METAL2) |
233 |
< |
copycolor(nd.scolor, nd.mcolor); |
233 |
> |
copyscolor(nd.scolor, nd.mcolor); |
234 |
|
else |
235 |
< |
setcolor(nd.scolor, 1.0, 1.0, 1.0); |
236 |
< |
scalecolor(nd.scolor, nd.rspec); |
223 |
< |
/* improved model */ |
224 |
< |
dtmp = exp(-BSPEC(m)*nd.pdot); |
225 |
< |
for (i = 0; i < 3; i++) |
226 |
< |
colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp; |
227 |
< |
nd.rspec += (1.0-nd.rspec)*dtmp; |
235 |
> |
setscolor(nd.scolor, 1.0, 1.0, 1.0); |
236 |
> |
scalescolor(nd.scolor, nd.rspec); |
237 |
|
/* check threshold */ |
238 |
< |
if (specthresh > FTINY && |
230 |
< |
(specthresh >= 1.-FTINY || |
231 |
< |
specthresh + .05 - .1*frandom() > nd.rspec)) |
238 |
> |
if (specthresh >= nd.rspec-FTINY) |
239 |
|
nd.specfl |= SP_RBLT; |
240 |
|
/* compute refl. direction */ |
241 |
< |
for (i = 0; i < 3; i++) |
235 |
< |
nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i]; |
241 |
> |
VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.0*nd.pdot); |
242 |
|
if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */ |
243 |
< |
for (i = 0; i < 3; i++) /* safety measure */ |
238 |
< |
nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; |
243 |
> |
VSUM(nd.vrefl, r->rdir, r->ron, 2.0*r->rod); |
244 |
|
} |
245 |
|
/* compute transmission */ |
246 |
|
if (m->otype == MAT_TRANS2) { |
250 |
|
if (nd.tspec > FTINY) { |
251 |
|
nd.specfl |= SP_TRAN; |
252 |
|
/* check threshold */ |
253 |
< |
if (specthresh > FTINY && |
249 |
< |
(specthresh >= 1.-FTINY || |
250 |
< |
specthresh + .05 - .1*frandom() > nd.tspec)) |
253 |
> |
if (specthresh >= nd.tspec-FTINY) |
254 |
|
nd.specfl |= SP_TBLT; |
255 |
|
if (DOT(r->pert,r->pert) <= FTINY*FTINY) { |
256 |
|
VCOPY(nd.prdir, r->rdir); |
257 |
|
} else { |
258 |
|
for (i = 0; i < 3; i++) /* perturb */ |
259 |
< |
nd.prdir[i] = r->rdir[i] - |
257 |
< |
0.5*r->pert[i]; |
259 |
> |
nd.prdir[i] = r->rdir[i] - r->pert[i]; |
260 |
|
if (DOT(nd.prdir, r->ron) < -FTINY) |
261 |
|
normalize(nd.prdir); /* OK */ |
262 |
|
else |
269 |
|
/* diffuse reflection */ |
270 |
|
nd.rdiff = 1.0 - nd.trans - nd.rspec; |
271 |
|
|
272 |
< |
if (r->ro != NULL && (r->ro->otype == OBJ_FACE || |
271 |
< |
r->ro->otype == OBJ_RING)) |
272 |
> |
if (r->ro != NULL && isflat(r->ro->otype)) |
273 |
|
nd.specfl |= SP_FLAT; |
274 |
|
|
275 |
< |
getacoords(r, &nd); /* set up coordinates */ |
275 |
> |
getacoords(&nd); /* set up coordinates */ |
276 |
|
|
277 |
< |
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU)) |
278 |
< |
agaussamp(r, &nd); |
277 |
> |
if (nd.specfl & (SP_REFL|SP_TRAN)) |
278 |
> |
agaussamp(&nd); |
279 |
|
|
280 |
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
281 |
< |
ambient(ctmp, r); |
282 |
< |
if (nd.specfl & SP_RBLT) |
283 |
< |
scalecolor(ctmp, 1.0-nd.trans); |
284 |
< |
else |
285 |
< |
scalecolor(ctmp, nd.rdiff); |
286 |
< |
multcolor(ctmp, nd.mcolor); /* modified by material color */ |
286 |
< |
addcolor(r->rcol, ctmp); /* add to returned color */ |
281 |
> |
copyscolor(sctmp, nd.mcolor); /* modified by material color */ |
282 |
> |
scalescolor(sctmp, nd.rdiff); |
283 |
> |
if (nd.specfl & SP_RBLT) /* add in specular as well? */ |
284 |
> |
saddscolor(sctmp, nd.scolor); |
285 |
> |
multambient(sctmp, r, nd.pnorm); |
286 |
> |
saddscolor(r->rcol, sctmp); /* add to returned color */ |
287 |
|
} |
288 |
+ |
|
289 |
|
if (nd.tdiff > FTINY) { /* ambient from other side */ |
290 |
+ |
FVECT bnorm; |
291 |
+ |
|
292 |
|
flipsurface(r); |
293 |
< |
ambient(ctmp, r); |
294 |
< |
if (nd.specfl & SP_TBLT) |
295 |
< |
scalecolor(ctmp, nd.trans); |
296 |
< |
else |
297 |
< |
scalecolor(ctmp, nd.tdiff); |
298 |
< |
multcolor(ctmp, nd.mcolor); /* modified by color */ |
299 |
< |
addcolor(r->rcol, ctmp); |
293 |
> |
bnorm[0] = -nd.pnorm[0]; |
294 |
> |
bnorm[1] = -nd.pnorm[1]; |
295 |
> |
bnorm[2] = -nd.pnorm[2]; |
296 |
> |
copyscolor(sctmp, nd.mcolor); /* modified by color */ |
297 |
> |
if (nd.specfl & SP_TBLT) { |
298 |
> |
scalescolor(sctmp, nd.trans); |
299 |
> |
} else { |
300 |
> |
scalescolor(sctmp, nd.tdiff); |
301 |
> |
} |
302 |
> |
multambient(sctmp, r, bnorm); |
303 |
> |
saddscolor(r->rcol, sctmp); |
304 |
|
flipsurface(r); |
305 |
|
} |
306 |
|
/* add direct component */ |
307 |
|
direct(r, diraniso, &nd); |
308 |
+ |
|
309 |
+ |
return(1); |
310 |
|
} |
311 |
|
|
312 |
< |
|
313 |
< |
static |
314 |
< |
getacoords(r, np) /* set up coordinate system */ |
315 |
< |
RAY *r; |
307 |
< |
register ANISODAT *np; |
312 |
> |
static void |
313 |
> |
getacoords( /* set up coordinate system */ |
314 |
> |
ANISODAT *np |
315 |
> |
) |
316 |
|
{ |
317 |
< |
register MFUNC *mf; |
318 |
< |
register int i; |
317 |
> |
MFUNC *mf; |
318 |
> |
int i; |
319 |
|
|
320 |
|
mf = getfunc(np->mp, 3, 0x7, 1); |
321 |
< |
setfunc(np->mp, r); |
321 |
> |
setfunc(np->mp, np->rp); |
322 |
|
errno = 0; |
323 |
|
for (i = 0; i < 3; i++) |
324 |
|
np->u[i] = evalue(mf->ep[i]); |
325 |
< |
if (errno) { |
326 |
< |
objerror(np->mp, WARNING, "compute error"); |
327 |
< |
np->specfl |= SP_BADU; |
328 |
< |
return; |
321 |
< |
} |
322 |
< |
if (mf->f != &unitxf) |
323 |
< |
multv3(np->u, np->u, mf->f->xfm); |
325 |
> |
if ((errno == EDOM) | (errno == ERANGE)) |
326 |
> |
np->u[0] = np->u[1] = np->u[2] = 0.0; |
327 |
> |
if (mf->fxp != &unitxf) |
328 |
> |
multv3(np->u, np->u, mf->fxp->xfm); |
329 |
|
fcross(np->v, np->pnorm, np->u); |
330 |
|
if (normalize(np->v) == 0.0) { |
331 |
< |
objerror(np->mp, WARNING, "illegal orientation vector"); |
332 |
< |
np->specfl |= SP_BADU; |
333 |
< |
return; |
334 |
< |
} |
335 |
< |
fcross(np->u, np->v, np->pnorm); |
331 |
> |
if (fabs(np->u_alpha - np->v_alpha) > 0.001) |
332 |
> |
objerror(np->mp, WARNING, "illegal orientation vector"); |
333 |
> |
getperpendicular(np->u, np->pnorm, 1); /* punting */ |
334 |
> |
fcross(np->v, np->pnorm, np->u); |
335 |
> |
np->u_alpha = np->v_alpha = sqrt( 0.5 * |
336 |
> |
(np->u_alpha*np->u_alpha + np->v_alpha*np->v_alpha) ); |
337 |
> |
} else |
338 |
> |
fcross(np->u, np->v, np->pnorm); |
339 |
|
} |
340 |
|
|
341 |
|
|
342 |
< |
static |
343 |
< |
agaussamp(r, np) /* sample anisotropic gaussian specular */ |
344 |
< |
RAY *r; |
345 |
< |
register ANISODAT *np; |
342 |
> |
static void |
343 |
> |
agaussamp( /* sample anisotropic Gaussian specular */ |
344 |
> |
ANISODAT *np |
345 |
> |
) |
346 |
|
{ |
347 |
|
RAY sr; |
348 |
|
FVECT h; |
349 |
|
double rv[2]; |
350 |
|
double d, sinp, cosp; |
351 |
< |
register int i; |
351 |
> |
SCOLOR scol; |
352 |
> |
int maxiter, ntrials, nstarget, nstaken; |
353 |
> |
int i; |
354 |
|
/* compute reflection */ |
355 |
|
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
356 |
< |
rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { |
357 |
< |
dimlist[ndims++] = (int)np->mp; |
358 |
< |
d = urand(ilhash(dimlist,ndims)+samplendx); |
359 |
< |
multisamp(rv, 2, d); |
360 |
< |
d = 2.0*PI * rv[0]; |
361 |
< |
cosp = cos(d); |
362 |
< |
sinp = sin(d); |
363 |
< |
d = sqrt(np->u_alpha2*cosp*cosp + np->v_alpha2*sinp*sinp); |
364 |
< |
cosp /= d; |
365 |
< |
sinp /= d; |
366 |
< |
rv[1] = 1.0 - specjitter*rv[1]; |
367 |
< |
if (rv[1] <= FTINY) |
368 |
< |
d = 1.0; |
369 |
< |
else |
370 |
< |
d = sqrt(-log(rv[1]) / |
371 |
< |
(cosp*cosp/np->u_alpha2 + |
372 |
< |
sinp*sinp/np->v_alpha2)); |
373 |
< |
for (i = 0; i < 3; i++) |
374 |
< |
h[i] = np->pnorm[i] + |
375 |
< |
d*(cosp*np->u[i] + sinp*np->v[i]); |
376 |
< |
d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); |
377 |
< |
for (i = 0; i < 3; i++) |
378 |
< |
sr.rdir[i] = r->rdir[i] + d*h[i]; |
379 |
< |
if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */ |
380 |
< |
VCOPY(sr.rdir, np->vrefl); /* jitter no good */ |
381 |
< |
rayvalue(&sr); |
382 |
< |
multcolor(sr.rcol, np->scolor); |
383 |
< |
addcolor(r->rcol, sr.rcol); |
356 |
> |
rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) { |
357 |
> |
nstarget = 1; |
358 |
> |
if (specjitter > 1.5) { /* multiple samples? */ |
359 |
> |
nstarget = specjitter*np->rp->rweight + .5; |
360 |
> |
if (sr.rweight <= minweight*nstarget) |
361 |
> |
nstarget = sr.rweight/minweight; |
362 |
> |
if (nstarget > 1) { |
363 |
> |
d = 1./nstarget; |
364 |
> |
scalecolor(sr.rcoef, d); |
365 |
> |
sr.rweight *= d; |
366 |
> |
} else |
367 |
> |
nstarget = 1; |
368 |
> |
} |
369 |
> |
scolorblack(scol); |
370 |
> |
dimlist[ndims++] = (int)(size_t)np->mp; |
371 |
> |
maxiter = MAXITER*nstarget; |
372 |
> |
for (nstaken = ntrials = 0; nstaken < nstarget && |
373 |
> |
ntrials < maxiter; ntrials++) { |
374 |
> |
if (ntrials) |
375 |
> |
d = frandom(); |
376 |
> |
else |
377 |
> |
d = urand(ilhash(dimlist,ndims)+samplendx); |
378 |
> |
multisamp(rv, 2, d); |
379 |
> |
d = 2.0*PI * rv[0]; |
380 |
> |
cosp = tcos(d) * np->u_alpha; |
381 |
> |
sinp = tsin(d) * np->v_alpha; |
382 |
> |
d = 1./sqrt(cosp*cosp + sinp*sinp); |
383 |
> |
cosp *= d; |
384 |
> |
sinp *= d; |
385 |
> |
if ((0. <= specjitter) & (specjitter < 1.)) |
386 |
> |
rv[1] = 1.0 - specjitter*rv[1]; |
387 |
> |
if (rv[1] <= FTINY) |
388 |
> |
d = 1.0; |
389 |
> |
else |
390 |
> |
d = sqrt(-log(rv[1]) / |
391 |
> |
(cosp*cosp/(np->u_alpha*np->u_alpha) + |
392 |
> |
sinp*sinp/(np->v_alpha*np->v_alpha))); |
393 |
> |
for (i = 0; i < 3; i++) |
394 |
> |
h[i] = np->pnorm[i] + |
395 |
> |
d*(cosp*np->u[i] + sinp*np->v[i]); |
396 |
> |
d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d); |
397 |
> |
VSUM(sr.rdir, np->rp->rdir, h, d); |
398 |
> |
/* sample rejection test */ |
399 |
> |
if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY) |
400 |
> |
continue; |
401 |
> |
checknorm(sr.rdir); |
402 |
> |
if (nstarget > 1) { /* W-G-M-D adjustment */ |
403 |
> |
if (nstaken) rayclear(&sr); |
404 |
> |
rayvalue(&sr); |
405 |
> |
d = 2./(1. + np->rp->rod/d); |
406 |
> |
scalescolor(sr.rcol, d); |
407 |
> |
saddscolor(scol, sr.rcol); |
408 |
> |
} else { |
409 |
> |
rayvalue(&sr); |
410 |
> |
smultscolor(sr.rcol, sr.rcoef); |
411 |
> |
saddscolor(np->rp->rcol, sr.rcol); |
412 |
> |
} |
413 |
> |
++nstaken; |
414 |
> |
} |
415 |
> |
if (nstarget > 1) { /* final W-G-M-D weighting */ |
416 |
> |
smultscolor(scol, sr.rcoef); |
417 |
> |
d = (double)nstarget/ntrials; |
418 |
> |
scalescolor(scol, d); |
419 |
> |
saddscolor(np->rp->rcol, scol); |
420 |
> |
} |
421 |
|
ndims--; |
422 |
|
} |
423 |
|
/* compute transmission */ |
424 |
+ |
copyscolor(sr.rcoef, np->mcolor); /* modify by material color */ |
425 |
+ |
scalescolor(sr.rcoef, np->tspec); |
426 |
|
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
427 |
< |
rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { |
428 |
< |
dimlist[ndims++] = (int)np->mp; |
429 |
< |
d = urand(ilhash(dimlist,ndims)+1823+samplendx); |
430 |
< |
multisamp(rv, 2, d); |
431 |
< |
d = 2.0*PI * rv[0]; |
432 |
< |
cosp = cos(d); |
433 |
< |
sinp = sin(d); |
434 |
< |
rv[1] = 1.0 - specjitter*rv[1]; |
435 |
< |
if (rv[1] <= FTINY) |
436 |
< |
d = 1.0; |
437 |
< |
else |
438 |
< |
d = sqrt(-log(rv[1]) / |
439 |
< |
(cosp*cosp*4./np->u_alpha2 + |
440 |
< |
sinp*sinp*4./np->v_alpha2)); |
441 |
< |
for (i = 0; i < 3; i++) |
442 |
< |
sr.rdir[i] = np->prdir[i] + |
443 |
< |
d*(cosp*np->u[i] + sinp*np->v[i]); |
444 |
< |
if (DOT(sr.rdir, r->ron) < -FTINY) |
445 |
< |
normalize(sr.rdir); /* OK, normalize */ |
446 |
< |
else |
447 |
< |
VCOPY(sr.rdir, np->prdir); /* else no jitter */ |
448 |
< |
rayvalue(&sr); |
449 |
< |
scalecolor(sr.rcol, np->tspec); |
450 |
< |
multcolor(sr.rcol, np->mcolor); /* modify by color */ |
451 |
< |
addcolor(r->rcol, sr.rcol); |
427 |
> |
rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) { |
428 |
> |
nstarget = 1; |
429 |
> |
if (specjitter > 1.5) { /* multiple samples? */ |
430 |
> |
nstarget = specjitter*np->rp->rweight + .5; |
431 |
> |
if (sr.rweight <= minweight*nstarget) |
432 |
> |
nstarget = sr.rweight/minweight; |
433 |
> |
if (nstarget > 1) { |
434 |
> |
d = 1./nstarget; |
435 |
> |
scalecolor(sr.rcoef, d); |
436 |
> |
sr.rweight *= d; |
437 |
> |
} else |
438 |
> |
nstarget = 1; |
439 |
> |
} |
440 |
> |
dimlist[ndims++] = (int)(size_t)np->mp; |
441 |
> |
maxiter = MAXITER*nstarget; |
442 |
> |
for (nstaken = ntrials = 0; nstaken < nstarget && |
443 |
> |
ntrials < maxiter; ntrials++) { |
444 |
> |
if (ntrials) |
445 |
> |
d = frandom(); |
446 |
> |
else |
447 |
> |
d = urand(ilhash(dimlist,ndims)+1823+samplendx); |
448 |
> |
multisamp(rv, 2, d); |
449 |
> |
d = 2.0*PI * rv[0]; |
450 |
> |
cosp = tcos(d) * np->u_alpha; |
451 |
> |
sinp = tsin(d) * np->v_alpha; |
452 |
> |
d = 1./sqrt(cosp*cosp + sinp*sinp); |
453 |
> |
cosp *= d; |
454 |
> |
sinp *= d; |
455 |
> |
if ((0. <= specjitter) & (specjitter < 1.)) |
456 |
> |
rv[1] = 1.0 - specjitter*rv[1]; |
457 |
> |
if (rv[1] <= FTINY) |
458 |
> |
d = 1.0; |
459 |
> |
else |
460 |
> |
d = sqrt(-log(rv[1]) / |
461 |
> |
(cosp*cosp/(np->u_alpha*np->u_alpha) + |
462 |
> |
sinp*sinp/(np->v_alpha*np->v_alpha))); |
463 |
> |
for (i = 0; i < 3; i++) |
464 |
> |
sr.rdir[i] = np->prdir[i] + |
465 |
> |
d*(cosp*np->u[i] + sinp*np->v[i]); |
466 |
> |
if (DOT(sr.rdir, np->rp->ron) >= -FTINY) |
467 |
> |
continue; |
468 |
> |
normalize(sr.rdir); /* OK, normalize */ |
469 |
> |
if (nstaken) /* multi-sampling */ |
470 |
> |
rayclear(&sr); |
471 |
> |
rayvalue(&sr); |
472 |
> |
smultscolor(sr.rcol, sr.rcoef); |
473 |
> |
saddscolor(np->rp->rcol, sr.rcol); |
474 |
> |
++nstaken; |
475 |
> |
} |
476 |
|
ndims--; |
477 |
|
} |
478 |
|
} |