ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.65
Committed: Thu Dec 5 19:23:43 2024 UTC (4 months, 4 weeks ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.64: +11 -19 lines
Log Message:
perf: Minor optimizations

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: aniso.c,v 2.64 2024/04/05 01:10:26 greg Exp $";
3 #endif
4 /*
5 * Shading functions for anisotropic materials.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "otypes.h"
13 #include "rtotypes.h"
14 #include "source.h"
15 #include "func.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 #ifndef MAXITER
20 #define MAXITER 10 /* maximum # specular ray attempts */
21 #endif
22
23 /*
24 * This routine implements the anisotropic Gaussian
25 * model described by Ward in Siggraph `92 article, updated with
26 * normalization and sampling adjustments due to Geisler-Moroder and Duer.
27 * We orient the surface towards the incoming ray, so a single
28 * surface can be used to represent an infinitely thin object.
29 *
30 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
31 * 4+ ux uy uz funcfile [transform...]
32 * 0
33 * 6 red grn blu specular-frac. u-rough v-rough
34 *
35 * Real arguments for MAT_TRANS2 are:
36 * 8 red grn blu rspec u-rough v-rough trans tspec
37 */
38
39 /* specularity flags */
40 #define SP_REFL 01 /* has reflected specular component */
41 #define SP_TRAN 02 /* has transmitted specular */
42 #define SP_FLAT 04 /* reflecting surface is flat */
43 #define SP_RBLT 010 /* reflection below sample threshold */
44 #define SP_TBLT 020 /* transmission below threshold */
45
46 typedef struct {
47 OBJREC *mp; /* material pointer */
48 RAY *rp; /* ray pointer */
49 short specfl; /* specularity flags, defined above */
50 SCOLOR mcolor; /* color of this material */
51 SCOLOR scolor; /* color of specular component */
52 FVECT prdir; /* vector in transmitted direction */
53 FVECT u, v; /* u and v vectors orienting anisotropy */
54 double u_alpha; /* u roughness */
55 double v_alpha; /* v roughness */
56 double rdiff, rspec; /* reflected specular, diffuse */
57 double trans; /* transmissivity */
58 double tdiff, tspec; /* transmitted specular, diffuse */
59 FVECT pnorm; /* perturbed surface normal */
60 double pdot; /* perturbed dot product */
61 } ANISODAT; /* anisotropic material data */
62
63 static void getacoords(ANISODAT *np);
64 static void agaussamp(ANISODAT *np);
65
66
67 static void
68 diraniso( /* compute source contribution */
69 SCOLOR scval, /* returned coefficient */
70 void *nnp, /* material data */
71 FVECT ldir, /* light source direction */
72 double omega /* light source size */
73 )
74 {
75 ANISODAT *np = nnp;
76 double ldot;
77 double dtmp, dtmp1, dtmp2;
78 FVECT h;
79 double au2, av2;
80 SCOLOR sctmp;
81
82 scolorblack(scval);
83
84 ldot = DOT(np->pnorm, ldir);
85
86 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
87 return; /* wrong side */
88
89 if ((ldot > FTINY) & (np->rdiff > FTINY)) {
90 /*
91 * Compute and add diffuse reflected component to returned
92 * color. The diffuse reflected component will always be
93 * modified by the color of the material.
94 */
95 copyscolor(sctmp, np->mcolor);
96 dtmp = ldot * omega * np->rdiff * (1.0/PI);
97 scalescolor(sctmp, dtmp);
98 saddscolor(scval, sctmp);
99 }
100
101 if ((ldot < -FTINY) & (np->tdiff > FTINY)) {
102 /*
103 * Compute diffuse transmission.
104 */
105 copyscolor(sctmp, np->mcolor);
106 dtmp = -ldot * omega * np->tdiff * (1.0/PI);
107 scalescolor(sctmp, dtmp);
108 saddscolor(scval, sctmp);
109 }
110
111 if (ambRayInPmap(np->rp))
112 return; /* specular accounted for in photon map */
113
114 if (ldot > FTINY && np->specfl&SP_REFL) {
115 /*
116 * Compute specular reflection coefficient using
117 * anisotropic Gaussian distribution model.
118 */
119 /* add source width if flat */
120 if (np->specfl & SP_FLAT)
121 au2 = av2 = omega * (0.25/PI);
122 else
123 au2 = av2 = 0.0;
124 au2 += np->u_alpha*np->u_alpha;
125 av2 += np->v_alpha*np->v_alpha;
126 /* half vector */
127 VSUB(h, ldir, np->rp->rdir);
128 /* ellipse */
129 dtmp1 = DOT(np->u, h);
130 dtmp1 *= dtmp1 / au2;
131 dtmp2 = DOT(np->v, h);
132 dtmp2 *= dtmp2 / av2;
133 /* new W-G-M-D model */
134 dtmp = DOT(np->pnorm, h);
135 dtmp *= dtmp;
136 dtmp1 = (dtmp1 + dtmp2) / dtmp;
137 dtmp = exp(-dtmp1) * DOT(h,h) /
138 (PI * dtmp*dtmp * sqrt(au2*av2));
139 /* worth using? */
140 if (dtmp > FTINY) {
141 copyscolor(sctmp, np->scolor);
142 dtmp *= ldot * omega;
143 scalescolor(sctmp, dtmp);
144 saddscolor(scval, sctmp);
145 }
146 }
147
148 if (ldot < -FTINY && np->specfl&SP_TRAN) {
149 /*
150 * Compute specular transmission. Specular transmission
151 * is always modified by material color.
152 */
153 /* roughness + source */
154 au2 = av2 = omega * (1.0/PI);
155 au2 += np->u_alpha*np->u_alpha;
156 av2 += np->v_alpha*np->v_alpha;
157 /* "half vector" */
158 VSUB(h, ldir, np->prdir);
159 dtmp = DOT(h,h);
160 if (dtmp > FTINY*FTINY) {
161 dtmp1 = DOT(h,np->pnorm);
162 dtmp = 1.0 - dtmp1*dtmp1/dtmp;
163 if (dtmp > FTINY*FTINY) {
164 dtmp1 = DOT(h,np->u);
165 dtmp1 *= dtmp1 / au2;
166 dtmp2 = DOT(h,np->v);
167 dtmp2 *= dtmp2 / av2;
168 dtmp = (dtmp1 + dtmp2) / dtmp;
169 }
170 } else
171 dtmp = 0.0;
172 /* Gaussian */
173 dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2));
174 /* worth using? */
175 if (dtmp > FTINY) {
176 copyscolor(sctmp, np->mcolor);
177 dtmp *= np->tspec * omega;
178 scalescolor(sctmp, dtmp);
179 saddscolor(scval, sctmp);
180 }
181 }
182 }
183
184
185 int
186 m_aniso( /* shade ray that hit something anisotropic */
187 OBJREC *m,
188 RAY *r
189 )
190 {
191 ANISODAT nd;
192 SCOLOR sctmp;
193 int i;
194 /* easy shadow test */
195 if (r->crtype & SHADOW)
196 return(1);
197
198 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
199 objerror(m, USER, "bad number of real arguments");
200 /* check for back side */
201 if (r->rod < 0.0) {
202 if (!backvis) {
203 raytrans(r);
204 return(1);
205 }
206 raytexture(r, m->omod);
207 flipsurface(r); /* reorient if backvis */
208 } else
209 raytexture(r, m->omod);
210 /* get material color */
211 nd.mp = m;
212 nd.rp = r;
213 setscolor(nd.mcolor, m->oargs.farg[0],
214 m->oargs.farg[1],
215 m->oargs.farg[2]);
216 /* get roughness */
217 nd.specfl = 0;
218 nd.u_alpha = m->oargs.farg[4];
219 nd.v_alpha = m->oargs.farg[5];
220 if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY))
221 objerror(m, USER, "roughness too small");
222
223 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
224 if (nd.pdot < .001)
225 nd.pdot = .001; /* non-zero for diraniso() */
226 smultscolor(nd.mcolor, r->pcol); /* modify material color */
227 /* get specular component */
228 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
229 nd.specfl |= SP_REFL;
230 /* compute specular color */
231 if (m->otype == MAT_METAL2)
232 copyscolor(nd.scolor, nd.mcolor);
233 else
234 setscolor(nd.scolor, 1.0, 1.0, 1.0);
235 scalescolor(nd.scolor, nd.rspec);
236 /* check threshold */
237 if (specthresh >= nd.rspec-FTINY)
238 nd.specfl |= SP_RBLT;
239 }
240 /* compute transmission */
241 if (m->otype == MAT_TRANS2) {
242 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
243 nd.tspec = nd.trans * m->oargs.farg[7];
244 nd.tdiff = nd.trans - nd.tspec;
245 if (nd.tspec > FTINY) {
246 nd.specfl |= SP_TRAN;
247 /* check threshold */
248 if (specthresh >= nd.tspec-FTINY)
249 nd.specfl |= SP_TBLT;
250 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
251 VCOPY(nd.prdir, r->rdir);
252 } else {
253 for (i = 0; i < 3; i++) /* perturb */
254 nd.prdir[i] = r->rdir[i] - r->pert[i];
255 if (DOT(nd.prdir, r->ron) < -FTINY)
256 normalize(nd.prdir); /* OK */
257 else
258 VCOPY(nd.prdir, r->rdir);
259 }
260 }
261 } else
262 nd.tdiff = nd.tspec = nd.trans = 0.0;
263
264 /* diffuse reflection */
265 nd.rdiff = 1.0 - nd.trans - nd.rspec;
266
267 if (r->ro != NULL && isflat(r->ro->otype))
268 nd.specfl |= SP_FLAT;
269
270 getacoords(&nd); /* set up coordinates */
271
272 if (nd.specfl & (SP_REFL|SP_TRAN))
273 agaussamp(&nd);
274
275 if (nd.rdiff > FTINY) { /* ambient from this side */
276 copyscolor(sctmp, nd.mcolor); /* modified by material color */
277 scalescolor(sctmp, nd.rdiff);
278 if (nd.specfl & SP_RBLT) /* add in specular as well? */
279 saddscolor(sctmp, nd.scolor);
280 multambient(sctmp, r, nd.pnorm);
281 saddscolor(r->rcol, sctmp); /* add to returned color */
282 }
283
284 if (nd.tdiff > FTINY) { /* ambient from other side */
285 FVECT bnorm;
286 bnorm[0] = -nd.pnorm[0];
287 bnorm[1] = -nd.pnorm[1];
288 bnorm[2] = -nd.pnorm[2];
289 copyscolor(sctmp, nd.mcolor); /* modified by color */
290 if (nd.specfl & SP_TBLT) {
291 scalescolor(sctmp, nd.trans);
292 } else {
293 scalescolor(sctmp, nd.tdiff);
294 }
295 multambient(sctmp, r, bnorm);
296 saddscolor(r->rcol, sctmp);
297 }
298 /* add direct component */
299 direct(r, diraniso, &nd);
300
301 return(1);
302 }
303
304 static void
305 getacoords( /* set up coordinate system */
306 ANISODAT *np
307 )
308 {
309 MFUNC *mf;
310 int i;
311
312 mf = getfunc(np->mp, 3, 0x7, 1);
313 setfunc(np->mp, np->rp);
314 errno = 0;
315 for (i = 0; i < 3; i++)
316 np->u[i] = evalue(mf->ep[i]);
317 if ((errno == EDOM) | (errno == ERANGE))
318 np->u[0] = np->u[1] = np->u[2] = 0.0;
319 else if (mf->fxp != &unitxf)
320 multv3(np->u, np->u, mf->fxp->xfm);
321 fcross(np->v, np->pnorm, np->u);
322 if (normalize(np->v) == 0.0) {
323 if (fabs(np->u_alpha - np->v_alpha) > 0.001)
324 objerror(np->mp, WARNING, "illegal orientation vector");
325 getperpendicular(np->u, np->pnorm, 1); /* punting */
326 fcross(np->v, np->pnorm, np->u);
327 np->u_alpha = np->v_alpha = sqrt( 0.5 *
328 (np->u_alpha*np->u_alpha + np->v_alpha*np->v_alpha) );
329 } else
330 fcross(np->u, np->v, np->pnorm);
331 }
332
333
334 static void
335 agaussamp( /* sample anisotropic Gaussian specular */
336 ANISODAT *np
337 )
338 {
339 RAY sr;
340 FVECT h;
341 double rv[2];
342 double d, sinp, cosp;
343 int maxiter, ntrials, nstarget, nstaken;
344 int i;
345 /* compute reflection */
346 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
347 rayorigin(&sr, RSPECULAR, np->rp, np->scolor) == 0) {
348 SCOLOR scol;
349 nstarget = 1;
350 if (specjitter > 1.5) { /* multiple samples? */
351 nstarget = specjitter*np->rp->rweight + .5;
352 if (sr.rweight <= minweight*nstarget)
353 nstarget = sr.rweight/minweight;
354 if (nstarget > 1) {
355 d = 1./nstarget;
356 scalescolor(sr.rcoef, d);
357 sr.rweight *= d;
358 } else
359 nstarget = 1;
360 }
361 scolorblack(scol);
362 dimlist[ndims++] = (int)(size_t)np->mp;
363 maxiter = MAXITER*nstarget;
364 for (nstaken = ntrials = 0; (nstaken < nstarget) &
365 (ntrials < maxiter); ntrials++) {
366 if (ntrials)
367 d = frandom();
368 else
369 d = urand(ilhash(dimlist,ndims)+samplendx);
370 multisamp(rv, 2, d);
371 d = 2.0*PI * rv[0];
372 cosp = tcos(d) * np->u_alpha;
373 sinp = tsin(d) * np->v_alpha;
374 d = 1./sqrt(cosp*cosp + sinp*sinp);
375 cosp *= d;
376 sinp *= d;
377 if ((0. <= specjitter) & (specjitter < 1.))
378 rv[1] = 1.0 - specjitter*rv[1];
379 d = (rv[1] <= FTINY) ? 1.0 : sqrt( -log(rv[1]) /
380 (cosp*cosp/(np->u_alpha*np->u_alpha) +
381 sinp*sinp/(np->v_alpha*np->v_alpha)) );
382 for (i = 0; i < 3; i++)
383 h[i] = np->pnorm[i] +
384 d*(cosp*np->u[i] + sinp*np->v[i]);
385 d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
386 VSUM(sr.rdir, np->rp->rdir, h, d);
387 /* sample rejection test */
388 if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
389 continue;
390 checknorm(sr.rdir);
391 if (nstarget > 1) { /* W-G-M-D adjustment */
392 if (nstaken) rayclear(&sr);
393 rayvalue(&sr);
394 d = 2./(1. + np->rp->rod/d);
395 scalescolor(sr.rcol, d);
396 saddscolor(scol, sr.rcol);
397 } else {
398 rayvalue(&sr);
399 smultscolor(sr.rcol, sr.rcoef);
400 saddscolor(np->rp->rcol, sr.rcol);
401 }
402 ++nstaken;
403 }
404 if (nstarget > 1) { /* final W-G-M-D weighting */
405 smultscolor(scol, sr.rcoef);
406 d = (double)nstarget/ntrials;
407 scalescolor(scol, d);
408 saddscolor(np->rp->rcol, scol);
409 }
410 ndims--;
411 }
412 /* compute transmission */
413 copyscolor(sr.rcoef, np->mcolor); /* modify by material color */
414 scalescolor(sr.rcoef, np->tspec);
415 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
416 rayorigin(&sr, TSPECULAR, np->rp, sr.rcoef) == 0) {
417 nstarget = 1;
418 if (specjitter > 1.5) { /* multiple samples? */
419 nstarget = specjitter*np->rp->rweight + .5;
420 if (sr.rweight <= minweight*nstarget)
421 nstarget = sr.rweight/minweight;
422 if (nstarget > 1) {
423 d = 1./nstarget;
424 scalescolor(sr.rcoef, d);
425 sr.rweight *= d;
426 } else
427 nstarget = 1;
428 }
429 dimlist[ndims++] = (int)(size_t)np->mp;
430 maxiter = MAXITER*nstarget;
431 for (nstaken = ntrials = 0; (nstaken < nstarget) &
432 (ntrials < maxiter); ntrials++) {
433 if (ntrials)
434 d = frandom();
435 else
436 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
437 multisamp(rv, 2, d);
438 d = 2.0*PI * rv[0];
439 cosp = tcos(d) * np->u_alpha;
440 sinp = tsin(d) * np->v_alpha;
441 d = 1./sqrt(cosp*cosp + sinp*sinp);
442 cosp *= d;
443 sinp *= d;
444 if ((0. <= specjitter) & (specjitter < 1.))
445 rv[1] = 1.0 - specjitter*rv[1];
446 if (rv[1] <= FTINY)
447 d = 1.0;
448 else
449 d = sqrt(-log(rv[1]) /
450 (cosp*cosp/(np->u_alpha*np->u_alpha) +
451 sinp*sinp/(np->v_alpha*np->v_alpha)));
452 for (i = 0; i < 3; i++)
453 sr.rdir[i] = np->prdir[i] +
454 d*(cosp*np->u[i] + sinp*np->v[i]);
455 if (DOT(sr.rdir,np->rp->ron) >= -FTINY)
456 continue; /* reject sample */
457 normalize(sr.rdir); /* OK, normalize */
458 if (nstaken) /* multi-sampling */
459 rayclear(&sr);
460 rayvalue(&sr);
461 smultscolor(sr.rcol, sr.rcoef);
462 saddscolor(np->rp->rcol, sr.rcol);
463 ++nstaken;
464 }
465 ndims--;
466 }
467 }