14 |
|
#include "source.h" |
15 |
|
#include "func.h" |
16 |
|
#include "random.h" |
17 |
+ |
#include "pmapmat.h" |
18 |
|
|
19 |
|
#ifndef MAXITER |
20 |
|
#define MAXITER 10 /* maximum # specular ray attempts */ |
22 |
|
|
23 |
|
/* |
24 |
|
* This routine implements the anisotropic Gaussian |
25 |
< |
* model described by Ward in Siggraph `92 article. |
25 |
> |
* model described by Ward in Siggraph `92 article, updated with |
26 |
> |
* normalization and sampling adjustments due to Geisler-Moroder and Duer. |
27 |
|
* We orient the surface towards the incoming ray, so a single |
28 |
|
* surface can be used to represent an infinitely thin object. |
29 |
|
* |
30 |
|
* Arguments for MAT_PLASTIC2 and MAT_METAL2 are: |
31 |
|
* 4+ ux uy uz funcfile [transform...] |
32 |
|
* 0 |
33 |
< |
* 6 red grn blu specular-frac. u-facet-slope v-facet-slope |
33 |
> |
* 6 red grn blu specular-frac. u-rough v-rough |
34 |
|
* |
35 |
|
* Real arguments for MAT_TRANS2 are: |
36 |
|
* 8 red grn blu rspec u-rough v-rough trans tspec |
42 |
|
#define SP_FLAT 04 /* reflecting surface is flat */ |
43 |
|
#define SP_RBLT 010 /* reflection below sample threshold */ |
44 |
|
#define SP_TBLT 020 /* transmission below threshold */ |
43 |
– |
#define SP_BADU 040 /* bad u direction calculation */ |
45 |
|
|
46 |
|
typedef struct { |
47 |
|
OBJREC *mp; /* material pointer */ |
48 |
|
RAY *rp; /* ray pointer */ |
49 |
|
short specfl; /* specularity flags, defined above */ |
50 |
< |
COLOR mcolor; /* color of this material */ |
51 |
< |
COLOR scolor; /* color of specular component */ |
51 |
< |
FVECT vrefl; /* vector in reflected direction */ |
50 |
> |
SCOLOR mcolor; /* color of this material */ |
51 |
> |
SCOLOR scolor; /* color of specular component */ |
52 |
|
FVECT prdir; /* vector in transmitted direction */ |
53 |
|
FVECT u, v; /* u and v vectors orienting anisotropy */ |
54 |
|
double u_alpha; /* u roughness */ |
60 |
|
double pdot; /* perturbed dot product */ |
61 |
|
} ANISODAT; /* anisotropic material data */ |
62 |
|
|
63 |
< |
static srcdirf_t diraniso; |
64 |
< |
static void getacoords(RAY *r, ANISODAT *np); |
65 |
< |
static void agaussamp(RAY *r, ANISODAT *np); |
63 |
> |
static void getacoords(ANISODAT *np); |
64 |
> |
static void agaussamp(ANISODAT *np); |
65 |
|
|
66 |
|
|
67 |
|
static void |
68 |
|
diraniso( /* compute source contribution */ |
69 |
< |
COLOR cval, /* returned coefficient */ |
70 |
< |
void *nnp, /* material data */ |
69 |
> |
SCOLOR scval, /* returned coefficient */ |
70 |
> |
void *nnp, /* material data */ |
71 |
|
FVECT ldir, /* light source direction */ |
72 |
|
double omega /* light source size */ |
73 |
|
) |
74 |
|
{ |
75 |
< |
register ANISODAT *np = nnp; |
75 |
> |
ANISODAT *np = nnp; |
76 |
|
double ldot; |
77 |
|
double dtmp, dtmp1, dtmp2; |
78 |
|
FVECT h; |
79 |
|
double au2, av2; |
80 |
< |
COLOR ctmp; |
80 |
> |
SCOLOR sctmp; |
81 |
|
|
82 |
< |
setcolor(cval, 0.0, 0.0, 0.0); |
82 |
> |
scolorblack(scval); |
83 |
|
|
84 |
|
ldot = DOT(np->pnorm, ldir); |
85 |
|
|
86 |
|
if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) |
87 |
|
return; /* wrong side */ |
88 |
|
|
89 |
< |
if (ldot > FTINY && np->rdiff > FTINY) { |
89 |
> |
if ((ldot > FTINY) & (np->rdiff > FTINY)) { |
90 |
|
/* |
91 |
|
* Compute and add diffuse reflected component to returned |
92 |
|
* color. The diffuse reflected component will always be |
93 |
|
* modified by the color of the material. |
94 |
|
*/ |
95 |
< |
copycolor(ctmp, np->mcolor); |
95 |
> |
copyscolor(sctmp, np->mcolor); |
96 |
|
dtmp = ldot * omega * np->rdiff * (1.0/PI); |
97 |
< |
scalecolor(ctmp, dtmp); |
98 |
< |
addcolor(cval, ctmp); |
97 |
> |
scalescolor(sctmp, dtmp); |
98 |
> |
saddscolor(scval, sctmp); |
99 |
|
} |
100 |
< |
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) { |
100 |
> |
|
101 |
> |
if ((ldot < -FTINY) & (np->tdiff > FTINY)) { |
102 |
|
/* |
103 |
+ |
* Compute diffuse transmission. |
104 |
+ |
*/ |
105 |
+ |
copyscolor(sctmp, np->mcolor); |
106 |
+ |
dtmp = -ldot * omega * np->tdiff * (1.0/PI); |
107 |
+ |
scalescolor(sctmp, dtmp); |
108 |
+ |
saddscolor(scval, sctmp); |
109 |
+ |
} |
110 |
+ |
|
111 |
+ |
if (ambRayInPmap(np->rp)) |
112 |
+ |
return; /* specular accounted for in photon map */ |
113 |
+ |
|
114 |
+ |
if (ldot > FTINY && np->specfl&SP_REFL) { |
115 |
+ |
/* |
116 |
|
* Compute specular reflection coefficient using |
117 |
|
* anisotropic Gaussian distribution model. |
118 |
|
*/ |
124 |
|
au2 += np->u_alpha*np->u_alpha; |
125 |
|
av2 += np->v_alpha*np->v_alpha; |
126 |
|
/* half vector */ |
127 |
< |
h[0] = ldir[0] - np->rp->rdir[0]; |
115 |
< |
h[1] = ldir[1] - np->rp->rdir[1]; |
116 |
< |
h[2] = ldir[2] - np->rp->rdir[2]; |
127 |
> |
VSUB(h, ldir, np->rp->rdir); |
128 |
|
/* ellipse */ |
129 |
|
dtmp1 = DOT(np->u, h); |
130 |
|
dtmp1 *= dtmp1 / au2; |
138 |
|
(PI * dtmp*dtmp * sqrt(au2*av2)); |
139 |
|
/* worth using? */ |
140 |
|
if (dtmp > FTINY) { |
141 |
< |
copycolor(ctmp, np->scolor); |
141 |
> |
copyscolor(sctmp, np->scolor); |
142 |
|
dtmp *= ldot * omega; |
143 |
< |
scalecolor(ctmp, dtmp); |
144 |
< |
addcolor(cval, ctmp); |
143 |
> |
scalescolor(sctmp, dtmp); |
144 |
> |
saddscolor(scval, sctmp); |
145 |
|
} |
146 |
|
} |
147 |
< |
if (ldot < -FTINY && np->tdiff > FTINY) { |
147 |
> |
|
148 |
> |
if (ldot < -FTINY && np->specfl&SP_TRAN) { |
149 |
|
/* |
138 |
– |
* Compute diffuse transmission. |
139 |
– |
*/ |
140 |
– |
copycolor(ctmp, np->mcolor); |
141 |
– |
dtmp = -ldot * omega * np->tdiff * (1.0/PI); |
142 |
– |
scalecolor(ctmp, dtmp); |
143 |
– |
addcolor(cval, ctmp); |
144 |
– |
} |
145 |
– |
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) { |
146 |
– |
/* |
150 |
|
* Compute specular transmission. Specular transmission |
151 |
|
* is always modified by material color. |
152 |
|
*/ |
155 |
|
au2 += np->u_alpha*np->u_alpha; |
156 |
|
av2 += np->v_alpha*np->v_alpha; |
157 |
|
/* "half vector" */ |
158 |
< |
h[0] = ldir[0] - np->prdir[0]; |
156 |
< |
h[1] = ldir[1] - np->prdir[1]; |
157 |
< |
h[2] = ldir[2] - np->prdir[2]; |
158 |
> |
VSUB(h, ldir, np->prdir); |
159 |
|
dtmp = DOT(h,h); |
160 |
|
if (dtmp > FTINY*FTINY) { |
161 |
|
dtmp1 = DOT(h,np->pnorm); |
173 |
|
dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2)); |
174 |
|
/* worth using? */ |
175 |
|
if (dtmp > FTINY) { |
176 |
< |
copycolor(ctmp, np->mcolor); |
176 |
> |
copyscolor(sctmp, np->mcolor); |
177 |
|
dtmp *= np->tspec * omega; |
178 |
< |
scalecolor(ctmp, dtmp); |
179 |
< |
addcolor(cval, ctmp); |
178 |
> |
scalescolor(sctmp, dtmp); |
179 |
> |
saddscolor(scval, sctmp); |
180 |
|
} |
181 |
|
} |
182 |
|
} |
183 |
|
|
184 |
|
|
185 |
< |
extern int |
185 |
> |
int |
186 |
|
m_aniso( /* shade ray that hit something anisotropic */ |
187 |
< |
register OBJREC *m, |
188 |
< |
register RAY *r |
187 |
> |
OBJREC *m, |
188 |
> |
RAY *r |
189 |
|
) |
190 |
|
{ |
191 |
|
ANISODAT nd; |
192 |
< |
COLOR ctmp; |
193 |
< |
register int i; |
192 |
> |
SCOLOR sctmp; |
193 |
> |
int i; |
194 |
|
/* easy shadow test */ |
195 |
|
if (r->crtype & SHADOW) |
196 |
|
return(1); |
199 |
|
objerror(m, USER, "bad number of real arguments"); |
200 |
|
/* check for back side */ |
201 |
|
if (r->rod < 0.0) { |
202 |
< |
if (!backvis && m->otype != MAT_TRANS2) { |
202 |
> |
if (!backvis) { |
203 |
|
raytrans(r); |
204 |
|
return(1); |
205 |
|
} |
210 |
|
/* get material color */ |
211 |
|
nd.mp = m; |
212 |
|
nd.rp = r; |
213 |
< |
setcolor(nd.mcolor, m->oargs.farg[0], |
213 |
> |
setscolor(nd.mcolor, m->oargs.farg[0], |
214 |
|
m->oargs.farg[1], |
215 |
|
m->oargs.farg[2]); |
216 |
|
/* get roughness */ |
217 |
|
nd.specfl = 0; |
218 |
|
nd.u_alpha = m->oargs.farg[4]; |
219 |
|
nd.v_alpha = m->oargs.farg[5]; |
220 |
< |
if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY) |
220 |
> |
if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY)) |
221 |
|
objerror(m, USER, "roughness too small"); |
222 |
|
|
223 |
|
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ |
224 |
|
if (nd.pdot < .001) |
225 |
|
nd.pdot = .001; /* non-zero for diraniso() */ |
226 |
< |
multcolor(nd.mcolor, r->pcol); /* modify material color */ |
226 |
> |
smultscolor(nd.mcolor, r->pcol); /* modify material color */ |
227 |
|
/* get specular component */ |
228 |
|
if ((nd.rspec = m->oargs.farg[3]) > FTINY) { |
229 |
|
nd.specfl |= SP_REFL; |
230 |
|
/* compute specular color */ |
231 |
|
if (m->otype == MAT_METAL2) |
232 |
< |
copycolor(nd.scolor, nd.mcolor); |
232 |
> |
copyscolor(nd.scolor, nd.mcolor); |
233 |
|
else |
234 |
< |
setcolor(nd.scolor, 1.0, 1.0, 1.0); |
235 |
< |
scalecolor(nd.scolor, nd.rspec); |
234 |
> |
setscolor(nd.scolor, 1.0, 1.0, 1.0); |
235 |
> |
scalescolor(nd.scolor, nd.rspec); |
236 |
|
/* check threshold */ |
237 |
|
if (specthresh >= nd.rspec-FTINY) |
238 |
|
nd.specfl |= SP_RBLT; |
238 |
– |
/* compute refl. direction */ |
239 |
– |
VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.0*nd.pdot); |
240 |
– |
if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */ |
241 |
– |
VSUM(nd.vrefl, r->rdir, r->ron, 2.0*r->rod); |
239 |
|
} |
240 |
|
/* compute transmission */ |
241 |
|
if (m->otype == MAT_TRANS2) { |
267 |
|
if (r->ro != NULL && isflat(r->ro->otype)) |
268 |
|
nd.specfl |= SP_FLAT; |
269 |
|
|
270 |
< |
getacoords(r, &nd); /* set up coordinates */ |
270 |
> |
getacoords(&nd); /* set up coordinates */ |
271 |
|
|
272 |
< |
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU)) |
273 |
< |
agaussamp(r, &nd); |
272 |
> |
if (nd.specfl & (SP_REFL|SP_TRAN)) |
273 |
> |
agaussamp(&nd); |
274 |
|
|
275 |
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
276 |
< |
copycolor(ctmp, nd.mcolor); /* modified by material color */ |
277 |
< |
scalecolor(ctmp, nd.rdiff); |
276 |
> |
copyscolor(sctmp, nd.mcolor); /* modified by material color */ |
277 |
> |
scalescolor(sctmp, nd.rdiff); |
278 |
|
if (nd.specfl & SP_RBLT) /* add in specular as well? */ |
279 |
< |
addcolor(ctmp, nd.scolor); |
280 |
< |
multambient(ctmp, r, nd.pnorm); |
281 |
< |
addcolor(r->rcol, ctmp); /* add to returned color */ |
279 |
> |
saddscolor(sctmp, nd.scolor); |
280 |
> |
multambient(sctmp, r, nd.pnorm); |
281 |
> |
saddscolor(r->rcol, sctmp); /* add to returned color */ |
282 |
|
} |
283 |
+ |
|
284 |
|
if (nd.tdiff > FTINY) { /* ambient from other side */ |
285 |
|
FVECT bnorm; |
288 |
– |
|
289 |
– |
flipsurface(r); |
286 |
|
bnorm[0] = -nd.pnorm[0]; |
287 |
|
bnorm[1] = -nd.pnorm[1]; |
288 |
|
bnorm[2] = -nd.pnorm[2]; |
289 |
< |
copycolor(ctmp, nd.mcolor); /* modified by color */ |
290 |
< |
if (nd.specfl & SP_TBLT) |
291 |
< |
scalecolor(ctmp, nd.trans); |
292 |
< |
else |
293 |
< |
scalecolor(ctmp, nd.tdiff); |
294 |
< |
multambient(ctmp, r, bnorm); |
295 |
< |
addcolor(r->rcol, ctmp); |
296 |
< |
flipsurface(r); |
289 |
> |
copyscolor(sctmp, nd.mcolor); /* modified by color */ |
290 |
> |
if (nd.specfl & SP_TBLT) { |
291 |
> |
scalescolor(sctmp, nd.trans); |
292 |
> |
} else { |
293 |
> |
scalescolor(sctmp, nd.tdiff); |
294 |
> |
} |
295 |
> |
multambient(sctmp, r, bnorm); |
296 |
> |
saddscolor(r->rcol, sctmp); |
297 |
|
} |
298 |
|
/* add direct component */ |
299 |
|
direct(r, diraniso, &nd); |
301 |
|
return(1); |
302 |
|
} |
303 |
|
|
308 |
– |
|
304 |
|
static void |
305 |
|
getacoords( /* set up coordinate system */ |
306 |
< |
RAY *r, |
312 |
< |
register ANISODAT *np |
306 |
> |
ANISODAT *np |
307 |
|
) |
308 |
|
{ |
309 |
< |
register MFUNC *mf; |
310 |
< |
register int i; |
309 |
> |
MFUNC *mf; |
310 |
> |
int i; |
311 |
|
|
312 |
|
mf = getfunc(np->mp, 3, 0x7, 1); |
313 |
< |
setfunc(np->mp, r); |
313 |
> |
setfunc(np->mp, np->rp); |
314 |
|
errno = 0; |
315 |
|
for (i = 0; i < 3; i++) |
316 |
|
np->u[i] = evalue(mf->ep[i]); |
317 |
< |
if (errno == EDOM || errno == ERANGE) { |
318 |
< |
objerror(np->mp, WARNING, "compute error"); |
319 |
< |
np->specfl |= SP_BADU; |
320 |
< |
return; |
327 |
< |
} |
328 |
< |
if (mf->f != &unitxf) |
329 |
< |
multv3(np->u, np->u, mf->f->xfm); |
317 |
> |
if ((errno == EDOM) | (errno == ERANGE)) |
318 |
> |
np->u[0] = np->u[1] = np->u[2] = 0.0; |
319 |
> |
else if (mf->fxp != &unitxf) |
320 |
> |
multv3(np->u, np->u, mf->fxp->xfm); |
321 |
|
fcross(np->v, np->pnorm, np->u); |
322 |
|
if (normalize(np->v) == 0.0) { |
323 |
< |
objerror(np->mp, WARNING, "illegal orientation vector"); |
324 |
< |
np->specfl |= SP_BADU; |
325 |
< |
return; |
326 |
< |
} |
327 |
< |
fcross(np->u, np->v, np->pnorm); |
323 |
> |
if (fabs(np->u_alpha - np->v_alpha) > 0.001) |
324 |
> |
objerror(np->mp, WARNING, "illegal orientation vector"); |
325 |
> |
getperpendicular(np->u, np->pnorm, 1); /* punting */ |
326 |
> |
fcross(np->v, np->pnorm, np->u); |
327 |
> |
np->u_alpha = np->v_alpha = sqrt( 0.5 * |
328 |
> |
(np->u_alpha*np->u_alpha + np->v_alpha*np->v_alpha) ); |
329 |
> |
} else |
330 |
> |
fcross(np->u, np->v, np->pnorm); |
331 |
|
} |
332 |
|
|
333 |
|
|
334 |
|
static void |
335 |
|
agaussamp( /* sample anisotropic Gaussian specular */ |
336 |
< |
RAY *r, |
343 |
< |
register ANISODAT *np |
336 |
> |
ANISODAT *np |
337 |
|
) |
338 |
|
{ |
339 |
|
RAY sr; |
340 |
|
FVECT h; |
341 |
|
double rv[2]; |
342 |
|
double d, sinp, cosp; |
350 |
– |
COLOR scol; |
343 |
|
int maxiter, ntrials, nstarget, nstaken; |
344 |
< |
register int i; |
344 |
> |
int i; |
345 |
|
/* compute reflection */ |
346 |
|
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
347 |
< |
rayorigin(&sr, SPECULAR, r, np->scolor) == 0) { |
347 |
> |
rayorigin(&sr, RSPECULAR, np->rp, np->scolor) == 0) { |
348 |
> |
SCOLOR scol; |
349 |
|
nstarget = 1; |
350 |
|
if (specjitter > 1.5) { /* multiple samples? */ |
351 |
< |
nstarget = specjitter*r->rweight + .5; |
351 |
> |
nstarget = specjitter*np->rp->rweight + .5; |
352 |
|
if (sr.rweight <= minweight*nstarget) |
353 |
|
nstarget = sr.rweight/minweight; |
354 |
|
if (nstarget > 1) { |
355 |
|
d = 1./nstarget; |
356 |
< |
scalecolor(sr.rcoef, d); |
356 |
> |
scalescolor(sr.rcoef, d); |
357 |
|
sr.rweight *= d; |
358 |
|
} else |
359 |
|
nstarget = 1; |
360 |
|
} |
361 |
< |
setcolor(scol, 0., 0., 0.); |
361 |
> |
scolorblack(scol); |
362 |
|
dimlist[ndims++] = (int)(size_t)np->mp; |
363 |
|
maxiter = MAXITER*nstarget; |
364 |
< |
for (nstaken = ntrials = 0; nstaken < nstarget && |
365 |
< |
ntrials < maxiter; ntrials++) { |
364 |
> |
for (nstaken = ntrials = 0; (nstaken < nstarget) & |
365 |
> |
(ntrials < maxiter); ntrials++) { |
366 |
|
if (ntrials) |
367 |
|
d = frandom(); |
368 |
|
else |
376 |
|
sinp *= d; |
377 |
|
if ((0. <= specjitter) & (specjitter < 1.)) |
378 |
|
rv[1] = 1.0 - specjitter*rv[1]; |
379 |
< |
if (rv[1] <= FTINY) |
387 |
< |
d = 1.0; |
388 |
< |
else |
389 |
< |
d = sqrt(-log(rv[1]) / |
379 |
> |
d = (rv[1] <= FTINY) ? 1.0 : sqrt( -log(rv[1]) / |
380 |
|
(cosp*cosp/(np->u_alpha*np->u_alpha) + |
381 |
< |
sinp*sinp/(np->v_alpha*np->v_alpha))); |
381 |
> |
sinp*sinp/(np->v_alpha*np->v_alpha)) ); |
382 |
|
for (i = 0; i < 3; i++) |
383 |
|
h[i] = np->pnorm[i] + |
384 |
|
d*(cosp*np->u[i] + sinp*np->v[i]); |
385 |
< |
d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); |
386 |
< |
VSUM(sr.rdir, r->rdir, h, d); |
385 |
> |
d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d); |
386 |
> |
VSUM(sr.rdir, np->rp->rdir, h, d); |
387 |
|
/* sample rejection test */ |
388 |
< |
if ((d = DOT(sr.rdir, r->ron)) <= FTINY) |
388 |
> |
if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY) |
389 |
|
continue; |
390 |
|
checknorm(sr.rdir); |
391 |
|
if (nstarget > 1) { /* W-G-M-D adjustment */ |
392 |
|
if (nstaken) rayclear(&sr); |
393 |
|
rayvalue(&sr); |
394 |
< |
d = 2./(1. + r->rod/d); |
395 |
< |
scalecolor(sr.rcol, d); |
396 |
< |
addcolor(scol, sr.rcol); |
394 |
> |
d = 2./(1. + np->rp->rod/d); |
395 |
> |
scalescolor(sr.rcol, d); |
396 |
> |
saddscolor(scol, sr.rcol); |
397 |
|
} else { |
398 |
|
rayvalue(&sr); |
399 |
< |
multcolor(sr.rcol, sr.rcoef); |
400 |
< |
addcolor(r->rcol, sr.rcol); |
399 |
> |
smultscolor(sr.rcol, sr.rcoef); |
400 |
> |
saddscolor(np->rp->rcol, sr.rcol); |
401 |
|
} |
402 |
|
++nstaken; |
403 |
|
} |
404 |
|
if (nstarget > 1) { /* final W-G-M-D weighting */ |
405 |
< |
multcolor(scol, sr.rcoef); |
405 |
> |
smultscolor(scol, sr.rcoef); |
406 |
|
d = (double)nstarget/ntrials; |
407 |
< |
scalecolor(scol, d); |
408 |
< |
addcolor(r->rcol, scol); |
407 |
> |
scalescolor(scol, d); |
408 |
> |
saddscolor(np->rp->rcol, scol); |
409 |
|
} |
410 |
|
ndims--; |
411 |
|
} |
412 |
|
/* compute transmission */ |
413 |
< |
copycolor(sr.rcoef, np->mcolor); /* modify by material color */ |
414 |
< |
scalecolor(sr.rcoef, np->tspec); |
413 |
> |
copyscolor(sr.rcoef, np->mcolor); /* modify by material color */ |
414 |
> |
scalescolor(sr.rcoef, np->tspec); |
415 |
|
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
416 |
< |
rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) { |
416 |
> |
rayorigin(&sr, TSPECULAR, np->rp, sr.rcoef) == 0) { |
417 |
|
nstarget = 1; |
418 |
|
if (specjitter > 1.5) { /* multiple samples? */ |
419 |
< |
nstarget = specjitter*r->rweight + .5; |
419 |
> |
nstarget = specjitter*np->rp->rweight + .5; |
420 |
|
if (sr.rweight <= minweight*nstarget) |
421 |
|
nstarget = sr.rweight/minweight; |
422 |
|
if (nstarget > 1) { |
423 |
|
d = 1./nstarget; |
424 |
< |
scalecolor(sr.rcoef, d); |
424 |
> |
scalescolor(sr.rcoef, d); |
425 |
|
sr.rweight *= d; |
426 |
|
} else |
427 |
|
nstarget = 1; |
428 |
|
} |
429 |
|
dimlist[ndims++] = (int)(size_t)np->mp; |
430 |
|
maxiter = MAXITER*nstarget; |
431 |
< |
for (nstaken = ntrials = 0; nstaken < nstarget && |
432 |
< |
ntrials < maxiter; ntrials++) { |
431 |
> |
for (nstaken = ntrials = 0; (nstaken < nstarget) & |
432 |
> |
(ntrials < maxiter); ntrials++) { |
433 |
|
if (ntrials) |
434 |
|
d = frandom(); |
435 |
|
else |
452 |
|
for (i = 0; i < 3; i++) |
453 |
|
sr.rdir[i] = np->prdir[i] + |
454 |
|
d*(cosp*np->u[i] + sinp*np->v[i]); |
455 |
< |
if (DOT(sr.rdir, r->ron) >= -FTINY) |
456 |
< |
continue; |
455 |
> |
if (DOT(sr.rdir,np->rp->ron) >= -FTINY) |
456 |
> |
continue; /* reject sample */ |
457 |
|
normalize(sr.rdir); /* OK, normalize */ |
458 |
|
if (nstaken) /* multi-sampling */ |
459 |
|
rayclear(&sr); |
460 |
|
rayvalue(&sr); |
461 |
< |
multcolor(sr.rcol, sr.rcoef); |
462 |
< |
addcolor(r->rcol, sr.rcol); |
461 |
> |
smultscolor(sr.rcol, sr.rcoef); |
462 |
> |
saddscolor(np->rp->rcol, sr.rcol); |
463 |
|
++nstaken; |
464 |
|
} |
465 |
|
ndims--; |