14 |
|
#include "source.h" |
15 |
|
#include "func.h" |
16 |
|
#include "random.h" |
17 |
+ |
#include "pmapmat.h" |
18 |
|
|
19 |
|
#ifndef MAXITER |
20 |
|
#define MAXITER 10 /* maximum # specular ray attempts */ |
22 |
|
|
23 |
|
/* |
24 |
|
* This routine implements the anisotropic Gaussian |
25 |
< |
* model described by Ward in Siggraph `92 article. |
25 |
> |
* model described by Ward in Siggraph `92 article, updated with |
26 |
> |
* normalization and sampling adjustments due to Geisler-Moroder and Duer. |
27 |
|
* We orient the surface towards the incoming ray, so a single |
28 |
|
* surface can be used to represent an infinitely thin object. |
29 |
|
* |
30 |
|
* Arguments for MAT_PLASTIC2 and MAT_METAL2 are: |
31 |
|
* 4+ ux uy uz funcfile [transform...] |
32 |
|
* 0 |
33 |
< |
* 6 red grn blu specular-frac. u-facet-slope v-facet-slope |
33 |
> |
* 6 red grn blu specular-frac. u-rough v-rough |
34 |
|
* |
35 |
|
* Real arguments for MAT_TRANS2 are: |
36 |
|
* 8 red grn blu rspec u-rough v-rough trans tspec |
42 |
|
#define SP_FLAT 04 /* reflecting surface is flat */ |
43 |
|
#define SP_RBLT 010 /* reflection below sample threshold */ |
44 |
|
#define SP_TBLT 020 /* transmission below threshold */ |
43 |
– |
#define SP_BADU 040 /* bad u direction calculation */ |
45 |
|
|
46 |
|
typedef struct { |
47 |
|
OBJREC *mp; /* material pointer */ |
61 |
|
double pdot; /* perturbed dot product */ |
62 |
|
} ANISODAT; /* anisotropic material data */ |
63 |
|
|
64 |
< |
static srcdirf_t diraniso; |
65 |
< |
static void getacoords(RAY *r, ANISODAT *np); |
65 |
< |
static void agaussamp(RAY *r, ANISODAT *np); |
64 |
> |
static void getacoords(ANISODAT *np); |
65 |
> |
static void agaussamp(ANISODAT *np); |
66 |
|
|
67 |
|
|
68 |
|
static void |
69 |
|
diraniso( /* compute source contribution */ |
70 |
|
COLOR cval, /* returned coefficient */ |
71 |
< |
void *nnp, /* material data */ |
71 |
> |
void *nnp, /* material data */ |
72 |
|
FVECT ldir, /* light source direction */ |
73 |
|
double omega /* light source size */ |
74 |
|
) |
75 |
|
{ |
76 |
< |
register ANISODAT *np = nnp; |
76 |
> |
ANISODAT *np = nnp; |
77 |
|
double ldot; |
78 |
|
double dtmp, dtmp1, dtmp2; |
79 |
|
FVECT h; |
87 |
|
if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) |
88 |
|
return; /* wrong side */ |
89 |
|
|
90 |
< |
if (ldot > FTINY && np->rdiff > FTINY) { |
90 |
> |
if ((ldot > FTINY) & (np->rdiff > FTINY)) { |
91 |
|
/* |
92 |
|
* Compute and add diffuse reflected component to returned |
93 |
|
* color. The diffuse reflected component will always be |
98 |
|
scalecolor(ctmp, dtmp); |
99 |
|
addcolor(cval, ctmp); |
100 |
|
} |
101 |
< |
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) { |
101 |
> |
|
102 |
> |
if ((ldot < -FTINY) & (np->tdiff > FTINY)) { |
103 |
|
/* |
104 |
+ |
* Compute diffuse transmission. |
105 |
+ |
*/ |
106 |
+ |
copycolor(ctmp, np->mcolor); |
107 |
+ |
dtmp = -ldot * omega * np->tdiff * (1.0/PI); |
108 |
+ |
scalecolor(ctmp, dtmp); |
109 |
+ |
addcolor(cval, ctmp); |
110 |
+ |
} |
111 |
+ |
|
112 |
+ |
/* PMAP: skip direct specular refl via ambient bounce if already |
113 |
+ |
* accounted for in photon map */ |
114 |
+ |
if (ambRayInPmap(np->rp)) |
115 |
+ |
return; |
116 |
+ |
|
117 |
+ |
if (ldot > FTINY && np->specfl&SP_REFL) { |
118 |
+ |
/* |
119 |
|
* Compute specular reflection coefficient using |
120 |
|
* anisotropic Gaussian distribution model. |
121 |
|
*/ |
127 |
|
au2 += np->u_alpha*np->u_alpha; |
128 |
|
av2 += np->v_alpha*np->v_alpha; |
129 |
|
/* half vector */ |
130 |
< |
h[0] = ldir[0] - np->rp->rdir[0]; |
115 |
< |
h[1] = ldir[1] - np->rp->rdir[1]; |
116 |
< |
h[2] = ldir[2] - np->rp->rdir[2]; |
130 |
> |
VSUB(h, ldir, np->rp->rdir); |
131 |
|
/* ellipse */ |
132 |
|
dtmp1 = DOT(np->u, h); |
133 |
|
dtmp1 *= dtmp1 / au2; |
147 |
|
addcolor(cval, ctmp); |
148 |
|
} |
149 |
|
} |
150 |
< |
if (ldot < -FTINY && np->tdiff > FTINY) { |
150 |
> |
|
151 |
> |
if (ldot < -FTINY && np->specfl&SP_TRAN) { |
152 |
|
/* |
138 |
– |
* Compute diffuse transmission. |
139 |
– |
*/ |
140 |
– |
copycolor(ctmp, np->mcolor); |
141 |
– |
dtmp = -ldot * omega * np->tdiff * (1.0/PI); |
142 |
– |
scalecolor(ctmp, dtmp); |
143 |
– |
addcolor(cval, ctmp); |
144 |
– |
} |
145 |
– |
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) { |
146 |
– |
/* |
153 |
|
* Compute specular transmission. Specular transmission |
154 |
|
* is always modified by material color. |
155 |
|
*/ |
158 |
|
au2 += np->u_alpha*np->u_alpha; |
159 |
|
av2 += np->v_alpha*np->v_alpha; |
160 |
|
/* "half vector" */ |
161 |
< |
h[0] = ldir[0] - np->prdir[0]; |
156 |
< |
h[1] = ldir[1] - np->prdir[1]; |
157 |
< |
h[2] = ldir[2] - np->prdir[2]; |
161 |
> |
VSUB(h, ldir, np->prdir); |
162 |
|
dtmp = DOT(h,h); |
163 |
|
if (dtmp > FTINY*FTINY) { |
164 |
|
dtmp1 = DOT(h,np->pnorm); |
185 |
|
} |
186 |
|
|
187 |
|
|
188 |
< |
extern int |
188 |
> |
int |
189 |
|
m_aniso( /* shade ray that hit something anisotropic */ |
190 |
< |
register OBJREC *m, |
191 |
< |
register RAY *r |
190 |
> |
OBJREC *m, |
191 |
> |
RAY *r |
192 |
|
) |
193 |
|
{ |
194 |
|
ANISODAT nd; |
195 |
|
COLOR ctmp; |
196 |
< |
register int i; |
196 |
> |
int i; |
197 |
|
/* easy shadow test */ |
198 |
|
if (r->crtype & SHADOW) |
199 |
|
return(1); |
202 |
|
objerror(m, USER, "bad number of real arguments"); |
203 |
|
/* check for back side */ |
204 |
|
if (r->rod < 0.0) { |
205 |
< |
if (!backvis && m->otype != MAT_TRANS2) { |
205 |
> |
if (!backvis) { |
206 |
|
raytrans(r); |
207 |
|
return(1); |
208 |
|
} |
220 |
|
nd.specfl = 0; |
221 |
|
nd.u_alpha = m->oargs.farg[4]; |
222 |
|
nd.v_alpha = m->oargs.farg[5]; |
223 |
< |
if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY) |
223 |
> |
if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY)) |
224 |
|
objerror(m, USER, "roughness too small"); |
225 |
|
|
226 |
|
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ |
274 |
|
if (r->ro != NULL && isflat(r->ro->otype)) |
275 |
|
nd.specfl |= SP_FLAT; |
276 |
|
|
277 |
< |
getacoords(r, &nd); /* set up coordinates */ |
277 |
> |
getacoords(&nd); /* set up coordinates */ |
278 |
|
|
279 |
< |
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU)) |
280 |
< |
agaussamp(r, &nd); |
279 |
> |
/* PMAP: skip indirect specular via ambient bounce if already accounted |
280 |
> |
* for in photon map */ |
281 |
> |
if (!ambRayInPmap(r) && nd.specfl & (SP_REFL|SP_TRAN)) |
282 |
> |
agaussamp(&nd); |
283 |
|
|
284 |
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
285 |
|
copycolor(ctmp, nd.mcolor); /* modified by material color */ |
289 |
|
multambient(ctmp, r, nd.pnorm); |
290 |
|
addcolor(r->rcol, ctmp); /* add to returned color */ |
291 |
|
} |
292 |
+ |
|
293 |
|
if (nd.tdiff > FTINY) { /* ambient from other side */ |
294 |
|
FVECT bnorm; |
295 |
|
|
312 |
|
return(1); |
313 |
|
} |
314 |
|
|
308 |
– |
|
315 |
|
static void |
316 |
|
getacoords( /* set up coordinate system */ |
317 |
< |
RAY *r, |
312 |
< |
register ANISODAT *np |
317 |
> |
ANISODAT *np |
318 |
|
) |
319 |
|
{ |
320 |
< |
register MFUNC *mf; |
321 |
< |
register int i; |
320 |
> |
MFUNC *mf; |
321 |
> |
int i; |
322 |
|
|
323 |
|
mf = getfunc(np->mp, 3, 0x7, 1); |
324 |
< |
setfunc(np->mp, r); |
324 |
> |
setfunc(np->mp, np->rp); |
325 |
|
errno = 0; |
326 |
|
for (i = 0; i < 3; i++) |
327 |
|
np->u[i] = evalue(mf->ep[i]); |
328 |
< |
if (errno == EDOM || errno == ERANGE) { |
329 |
< |
objerror(np->mp, WARNING, "compute error"); |
330 |
< |
np->specfl |= SP_BADU; |
331 |
< |
return; |
327 |
< |
} |
328 |
< |
if (mf->f != &unitxf) |
329 |
< |
multv3(np->u, np->u, mf->f->xfm); |
328 |
> |
if ((errno == EDOM) | (errno == ERANGE)) |
329 |
> |
np->u[0] = np->u[1] = np->u[2] = 0.0; |
330 |
> |
if (mf->fxp != &unitxf) |
331 |
> |
multv3(np->u, np->u, mf->fxp->xfm); |
332 |
|
fcross(np->v, np->pnorm, np->u); |
333 |
|
if (normalize(np->v) == 0.0) { |
334 |
< |
objerror(np->mp, WARNING, "illegal orientation vector"); |
335 |
< |
np->specfl |= SP_BADU; |
336 |
< |
return; |
337 |
< |
} |
338 |
< |
fcross(np->u, np->v, np->pnorm); |
334 |
> |
if (fabs(np->u_alpha - np->v_alpha) > 0.001) |
335 |
> |
objerror(np->mp, WARNING, "illegal orientation vector"); |
336 |
> |
getperpendicular(np->u, np->pnorm, 1); /* punting */ |
337 |
> |
fcross(np->v, np->pnorm, np->u); |
338 |
> |
np->u_alpha = np->v_alpha = sqrt( 0.5 * |
339 |
> |
(np->u_alpha*np->u_alpha + np->v_alpha*np->v_alpha) ); |
340 |
> |
} else |
341 |
> |
fcross(np->u, np->v, np->pnorm); |
342 |
|
} |
343 |
|
|
344 |
|
|
345 |
|
static void |
346 |
|
agaussamp( /* sample anisotropic Gaussian specular */ |
347 |
< |
RAY *r, |
343 |
< |
register ANISODAT *np |
347 |
> |
ANISODAT *np |
348 |
|
) |
349 |
|
{ |
350 |
|
RAY sr; |
353 |
|
double d, sinp, cosp; |
354 |
|
COLOR scol; |
355 |
|
int maxiter, ntrials, nstarget, nstaken; |
356 |
< |
register int i; |
356 |
> |
int i; |
357 |
|
/* compute reflection */ |
358 |
|
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
359 |
< |
rayorigin(&sr, SPECULAR, r, np->scolor) == 0) { |
359 |
> |
rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) { |
360 |
|
nstarget = 1; |
361 |
|
if (specjitter > 1.5) { /* multiple samples? */ |
362 |
< |
nstarget = specjitter*r->rweight + .5; |
362 |
> |
nstarget = specjitter*np->rp->rweight + .5; |
363 |
|
if (sr.rweight <= minweight*nstarget) |
364 |
|
nstarget = sr.rweight/minweight; |
365 |
|
if (nstarget > 1) { |
396 |
|
for (i = 0; i < 3; i++) |
397 |
|
h[i] = np->pnorm[i] + |
398 |
|
d*(cosp*np->u[i] + sinp*np->v[i]); |
399 |
< |
d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); |
400 |
< |
VSUM(sr.rdir, r->rdir, h, d); |
399 |
> |
d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d); |
400 |
> |
VSUM(sr.rdir, np->rp->rdir, h, d); |
401 |
|
/* sample rejection test */ |
402 |
< |
if ((d = DOT(sr.rdir, r->ron)) <= FTINY) |
402 |
> |
if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY) |
403 |
|
continue; |
404 |
|
checknorm(sr.rdir); |
405 |
|
if (nstarget > 1) { /* W-G-M-D adjustment */ |
406 |
|
if (nstaken) rayclear(&sr); |
407 |
|
rayvalue(&sr); |
408 |
< |
d = 2./(1. + r->rod/d); |
408 |
> |
d = 2./(1. + np->rp->rod/d); |
409 |
|
scalecolor(sr.rcol, d); |
410 |
|
addcolor(scol, sr.rcol); |
411 |
|
} else { |
412 |
|
rayvalue(&sr); |
413 |
|
multcolor(sr.rcol, sr.rcoef); |
414 |
< |
addcolor(r->rcol, sr.rcol); |
414 |
> |
addcolor(np->rp->rcol, sr.rcol); |
415 |
|
} |
416 |
|
++nstaken; |
417 |
|
} |
419 |
|
multcolor(scol, sr.rcoef); |
420 |
|
d = (double)nstarget/ntrials; |
421 |
|
scalecolor(scol, d); |
422 |
< |
addcolor(r->rcol, scol); |
422 |
> |
addcolor(np->rp->rcol, scol); |
423 |
|
} |
424 |
|
ndims--; |
425 |
|
} |
427 |
|
copycolor(sr.rcoef, np->mcolor); /* modify by material color */ |
428 |
|
scalecolor(sr.rcoef, np->tspec); |
429 |
|
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
430 |
< |
rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) { |
430 |
> |
rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) { |
431 |
|
nstarget = 1; |
432 |
|
if (specjitter > 1.5) { /* multiple samples? */ |
433 |
< |
nstarget = specjitter*r->rweight + .5; |
433 |
> |
nstarget = specjitter*np->rp->rweight + .5; |
434 |
|
if (sr.rweight <= minweight*nstarget) |
435 |
|
nstarget = sr.rweight/minweight; |
436 |
|
if (nstarget > 1) { |
466 |
|
for (i = 0; i < 3; i++) |
467 |
|
sr.rdir[i] = np->prdir[i] + |
468 |
|
d*(cosp*np->u[i] + sinp*np->v[i]); |
469 |
< |
if (DOT(sr.rdir, r->ron) >= -FTINY) |
469 |
> |
if (DOT(sr.rdir, np->rp->ron) >= -FTINY) |
470 |
|
continue; |
471 |
|
normalize(sr.rdir); /* OK, normalize */ |
472 |
|
if (nstaken) /* multi-sampling */ |
473 |
|
rayclear(&sr); |
474 |
|
rayvalue(&sr); |
475 |
|
multcolor(sr.rcol, sr.rcoef); |
476 |
< |
addcolor(r->rcol, sr.rcol); |
476 |
> |
addcolor(np->rp->rcol, sr.rcol); |
477 |
|
++nstaken; |
478 |
|
} |
479 |
|
ndims--; |