1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: aniso.c,v 2.67 2024/12/19 23:25:28 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* Shading functions for anisotropic materials. |
6 |
*/ |
7 |
|
8 |
#include "copyright.h" |
9 |
|
10 |
#include "ray.h" |
11 |
#include "ambient.h" |
12 |
#include "otypes.h" |
13 |
#include "rtotypes.h" |
14 |
#include "source.h" |
15 |
#include "func.h" |
16 |
#include "random.h" |
17 |
#include "pmapmat.h" |
18 |
|
19 |
#ifndef MAXITER |
20 |
#define MAXITER 10 /* maximum # specular ray attempts */ |
21 |
#endif |
22 |
|
23 |
/* |
24 |
* This routine implements the anisotropic Gaussian |
25 |
* model described by Ward in Siggraph `92 article, updated with |
26 |
* normalization and sampling adjustments due to Geisler-Moroder and Duer. |
27 |
* We orient the surface towards the incoming ray, so a single |
28 |
* surface can be used to represent an infinitely thin object. |
29 |
* |
30 |
* Arguments for MAT_PLASTIC2 and MAT_METAL2 are: |
31 |
* 4+ ux uy uz funcfile [transform...] |
32 |
* 0 |
33 |
* 6 red grn blu specular-frac. u-rough v-rough |
34 |
* |
35 |
* Real arguments for MAT_TRANS2 are: |
36 |
* 8 red grn blu rspec u-rough v-rough trans tspec |
37 |
*/ |
38 |
|
39 |
/* specularity flags */ |
40 |
#define SP_REFL 01 /* has reflected specular component */ |
41 |
#define SP_TRAN 02 /* has transmitted specular */ |
42 |
#define SP_FLAT 04 /* reflecting surface is flat */ |
43 |
#define SP_RBLT 010 /* reflection below sample threshold */ |
44 |
#define SP_TBLT 020 /* transmission below threshold */ |
45 |
|
46 |
typedef struct { |
47 |
OBJREC *mp; /* material pointer */ |
48 |
RAY *rp; /* ray pointer */ |
49 |
short specfl; /* specularity flags, defined above */ |
50 |
SCOLOR mcolor; /* color of this material */ |
51 |
SCOLOR scolor; /* color of specular component */ |
52 |
FVECT prdir; /* vector in transmitted direction */ |
53 |
FVECT u, v; /* u and v vectors orienting anisotropy */ |
54 |
double u_alpha; /* u roughness */ |
55 |
double v_alpha; /* v roughness */ |
56 |
double rdiff, rspec; /* reflected specular, diffuse */ |
57 |
double trans; /* transmissivity */ |
58 |
double tdiff, tspec; /* transmitted specular, diffuse */ |
59 |
FVECT pnorm; /* perturbed surface normal */ |
60 |
double pdot; /* perturbed dot product */ |
61 |
} ANISODAT; /* anisotropic material data */ |
62 |
|
63 |
static void getacoords(ANISODAT *np); |
64 |
static void agaussamp(ANISODAT *np); |
65 |
|
66 |
|
67 |
static void |
68 |
diraniso( /* compute source contribution */ |
69 |
SCOLOR scval, /* returned coefficient */ |
70 |
void *nnp, /* material data */ |
71 |
FVECT ldir, /* light source direction */ |
72 |
double omega /* light source size */ |
73 |
) |
74 |
{ |
75 |
ANISODAT *np = nnp; |
76 |
double ldot; |
77 |
double dtmp, dtmp1, dtmp2; |
78 |
FVECT h; |
79 |
double au2, av2; |
80 |
SCOLOR sctmp; |
81 |
|
82 |
scolorblack(scval); |
83 |
|
84 |
ldot = DOT(np->pnorm, ldir); |
85 |
|
86 |
if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) |
87 |
return; /* wrong side */ |
88 |
|
89 |
if ((ldot > FTINY) & (np->rdiff > FTINY)) { |
90 |
/* |
91 |
* Compute and add diffuse reflected component to returned |
92 |
* color. The diffuse reflected component will always be |
93 |
* modified by the color of the material. |
94 |
*/ |
95 |
copyscolor(sctmp, np->mcolor); |
96 |
dtmp = ldot * omega * np->rdiff * (1.0/PI); |
97 |
scalescolor(sctmp, dtmp); |
98 |
saddscolor(scval, sctmp); |
99 |
} |
100 |
|
101 |
if ((ldot < -FTINY) & (np->tdiff > FTINY)) { |
102 |
/* |
103 |
* Compute diffuse transmission. |
104 |
*/ |
105 |
copyscolor(sctmp, np->mcolor); |
106 |
dtmp = -ldot * omega * np->tdiff * (1.0/PI); |
107 |
scalescolor(sctmp, dtmp); |
108 |
saddscolor(scval, sctmp); |
109 |
} |
110 |
|
111 |
if (ambRayInPmap(np->rp)) |
112 |
return; /* specular accounted for in photon map */ |
113 |
|
114 |
if (ldot > FTINY && np->specfl&SP_REFL) { |
115 |
/* |
116 |
* Compute specular reflection coefficient using |
117 |
* anisotropic Gaussian distribution model. |
118 |
*/ |
119 |
/* add source width if flat */ |
120 |
if (np->specfl & SP_FLAT) |
121 |
au2 = av2 = (1. - dstrsrc) * omega * (0.25/PI); |
122 |
else |
123 |
au2 = av2 = 0.0; |
124 |
au2 += np->u_alpha*np->u_alpha; |
125 |
av2 += np->v_alpha*np->v_alpha; |
126 |
/* half vector */ |
127 |
VSUB(h, ldir, np->rp->rdir); |
128 |
/* ellipse */ |
129 |
dtmp1 = DOT(np->u, h); |
130 |
dtmp1 *= dtmp1 / au2; |
131 |
dtmp2 = DOT(np->v, h); |
132 |
dtmp2 *= dtmp2 / av2; |
133 |
/* new W-G-M-D model */ |
134 |
dtmp = DOT(np->pnorm, h); |
135 |
dtmp *= dtmp; |
136 |
dtmp1 = (dtmp1 + dtmp2) / dtmp; |
137 |
dtmp = exp(-dtmp1) * DOT(h,h) / |
138 |
(PI * dtmp*dtmp * sqrt(au2*av2)); |
139 |
/* worth using? */ |
140 |
if (dtmp > FTINY) { |
141 |
copyscolor(sctmp, np->scolor); |
142 |
dtmp *= ldot * omega; |
143 |
scalescolor(sctmp, dtmp); |
144 |
saddscolor(scval, sctmp); |
145 |
} |
146 |
} |
147 |
|
148 |
if (ldot < -FTINY && np->specfl&SP_TRAN) { |
149 |
/* |
150 |
* Compute specular transmission. Specular transmission |
151 |
* is always modified by material color. |
152 |
*/ |
153 |
/* roughness + source */ |
154 |
au2 = av2 = omega * (1.0/PI); |
155 |
au2 += np->u_alpha*np->u_alpha; |
156 |
av2 += np->v_alpha*np->v_alpha; |
157 |
/* "half vector" */ |
158 |
VSUB(h, ldir, np->prdir); |
159 |
dtmp = DOT(h,h); |
160 |
if (dtmp > FTINY*FTINY) { |
161 |
dtmp1 = DOT(h,np->pnorm); |
162 |
dtmp = 1.0 - dtmp1*dtmp1/dtmp; |
163 |
} |
164 |
if (dtmp > FTINY*FTINY) { |
165 |
dtmp1 = DOT(h,np->u); |
166 |
dtmp1 *= dtmp1 / au2; |
167 |
dtmp2 = DOT(h,np->v); |
168 |
dtmp2 *= dtmp2 / av2; |
169 |
dtmp = (dtmp1 + dtmp2) / dtmp; |
170 |
dtmp = exp(-dtmp); |
171 |
} else |
172 |
dtmp = 1.0; |
173 |
/* Gaussian */ |
174 |
dtmp *= (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2)); |
175 |
/* worth using? */ |
176 |
if (dtmp > FTINY) { |
177 |
copyscolor(sctmp, np->mcolor); |
178 |
dtmp *= np->tspec * omega; |
179 |
scalescolor(sctmp, dtmp); |
180 |
saddscolor(scval, sctmp); |
181 |
} |
182 |
} |
183 |
} |
184 |
|
185 |
|
186 |
int |
187 |
m_aniso( /* shade ray that hit something anisotropic */ |
188 |
OBJREC *m, |
189 |
RAY *r |
190 |
) |
191 |
{ |
192 |
ANISODAT nd; |
193 |
SCOLOR sctmp; |
194 |
int i; |
195 |
/* easy shadow test */ |
196 |
if (r->crtype & SHADOW) |
197 |
return(1); |
198 |
|
199 |
if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6)) |
200 |
objerror(m, USER, "bad number of real arguments"); |
201 |
/* check for back side */ |
202 |
if (r->rod < 0.0) { |
203 |
if (!backvis) { |
204 |
raytrans(r); |
205 |
return(1); |
206 |
} |
207 |
raytexture(r, m->omod); |
208 |
flipsurface(r); /* reorient if backvis */ |
209 |
} else |
210 |
raytexture(r, m->omod); |
211 |
/* get material color */ |
212 |
nd.mp = m; |
213 |
nd.rp = r; |
214 |
setscolor(nd.mcolor, m->oargs.farg[0], |
215 |
m->oargs.farg[1], |
216 |
m->oargs.farg[2]); |
217 |
/* get roughness */ |
218 |
nd.specfl = 0; |
219 |
nd.u_alpha = m->oargs.farg[4]; |
220 |
nd.v_alpha = m->oargs.farg[5]; |
221 |
if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY)) |
222 |
objerror(m, USER, "roughness too small"); |
223 |
|
224 |
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ |
225 |
if (nd.pdot < .001) |
226 |
nd.pdot = .001; /* non-zero for diraniso() */ |
227 |
smultscolor(nd.mcolor, r->pcol); /* modify material color */ |
228 |
/* get specular component */ |
229 |
if ((nd.rspec = m->oargs.farg[3]) > FTINY) { |
230 |
nd.specfl |= SP_REFL; |
231 |
/* compute specular color */ |
232 |
if (m->otype == MAT_METAL2) |
233 |
copyscolor(nd.scolor, nd.mcolor); |
234 |
else |
235 |
setscolor(nd.scolor, 1.0, 1.0, 1.0); |
236 |
scalescolor(nd.scolor, nd.rspec); |
237 |
/* check threshold */ |
238 |
if (specthresh >= nd.rspec-FTINY) |
239 |
nd.specfl |= SP_RBLT; |
240 |
} |
241 |
/* compute transmission */ |
242 |
if (m->otype == MAT_TRANS2) { |
243 |
nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec); |
244 |
nd.tspec = nd.trans * m->oargs.farg[7]; |
245 |
nd.tdiff = nd.trans - nd.tspec; |
246 |
if (nd.tspec > FTINY) { |
247 |
nd.specfl |= SP_TRAN; |
248 |
/* check threshold */ |
249 |
if (specthresh >= nd.tspec-FTINY) |
250 |
nd.specfl |= SP_TBLT; |
251 |
if (DOT(r->pert,r->pert) <= FTINY*FTINY) { |
252 |
VCOPY(nd.prdir, r->rdir); |
253 |
} else { |
254 |
for (i = 0; i < 3; i++) /* perturb */ |
255 |
nd.prdir[i] = r->rdir[i] - r->pert[i]; |
256 |
if (DOT(nd.prdir, r->ron) < -FTINY) |
257 |
normalize(nd.prdir); /* OK */ |
258 |
else |
259 |
VCOPY(nd.prdir, r->rdir); |
260 |
} |
261 |
} |
262 |
} else |
263 |
nd.tdiff = nd.tspec = nd.trans = 0.0; |
264 |
|
265 |
/* diffuse reflection */ |
266 |
nd.rdiff = 1.0 - nd.trans - nd.rspec; |
267 |
|
268 |
if (r->ro != NULL && isflat(r->ro->otype) && |
269 |
DOT(r->pert,r->pert) <= FTINY*FTINY) |
270 |
nd.specfl |= SP_FLAT; |
271 |
|
272 |
getacoords(&nd); /* set up coordinates */ |
273 |
|
274 |
if (nd.specfl & (SP_REFL|SP_TRAN)) |
275 |
agaussamp(&nd); |
276 |
|
277 |
if (nd.rdiff > FTINY) { /* ambient from this side */ |
278 |
copyscolor(sctmp, nd.mcolor); /* modified by material color */ |
279 |
scalescolor(sctmp, nd.rdiff); |
280 |
if (nd.specfl & SP_RBLT) /* add in specular as well? */ |
281 |
saddscolor(sctmp, nd.scolor); |
282 |
multambient(sctmp, r, nd.pnorm); |
283 |
saddscolor(r->rcol, sctmp); /* add to returned color */ |
284 |
} |
285 |
|
286 |
if (nd.tdiff > FTINY) { /* ambient from other side */ |
287 |
FVECT bnorm; |
288 |
bnorm[0] = -nd.pnorm[0]; |
289 |
bnorm[1] = -nd.pnorm[1]; |
290 |
bnorm[2] = -nd.pnorm[2]; |
291 |
copyscolor(sctmp, nd.mcolor); /* modified by color */ |
292 |
if (nd.specfl & SP_TBLT) { |
293 |
scalescolor(sctmp, nd.trans); |
294 |
} else { |
295 |
scalescolor(sctmp, nd.tdiff); |
296 |
} |
297 |
multambient(sctmp, r, bnorm); |
298 |
saddscolor(r->rcol, sctmp); |
299 |
} |
300 |
/* add direct component */ |
301 |
direct(r, diraniso, &nd); |
302 |
|
303 |
return(1); |
304 |
} |
305 |
|
306 |
static void |
307 |
getacoords( /* set up coordinate system */ |
308 |
ANISODAT *np |
309 |
) |
310 |
{ |
311 |
MFUNC *mf; |
312 |
int i; |
313 |
|
314 |
mf = getfunc(np->mp, 3, 0x7, 1); |
315 |
setfunc(np->mp, np->rp); |
316 |
errno = 0; |
317 |
for (i = 0; i < 3; i++) |
318 |
np->u[i] = evalue(mf->ep[i]); |
319 |
if ((errno == EDOM) | (errno == ERANGE)) |
320 |
np->u[0] = np->u[1] = np->u[2] = 0.0; |
321 |
else if (mf->fxp != &unitxf) |
322 |
multv3(np->u, np->u, mf->fxp->xfm); |
323 |
fcross(np->v, np->pnorm, np->u); |
324 |
if (normalize(np->v) == 0.0) { |
325 |
if (fabs(np->u_alpha - np->v_alpha) > 0.001) |
326 |
objerror(np->mp, WARNING, "illegal orientation vector"); |
327 |
getperpendicular(np->u, np->pnorm, 1); /* punting */ |
328 |
fcross(np->v, np->pnorm, np->u); |
329 |
np->u_alpha = np->v_alpha = sqrt( 0.5 * |
330 |
(np->u_alpha*np->u_alpha + np->v_alpha*np->v_alpha) ); |
331 |
} else |
332 |
fcross(np->u, np->v, np->pnorm); |
333 |
} |
334 |
|
335 |
|
336 |
static void |
337 |
agaussamp( /* sample anisotropic Gaussian specular */ |
338 |
ANISODAT *np |
339 |
) |
340 |
{ |
341 |
RAY sr; |
342 |
FVECT h; |
343 |
double rv[2]; |
344 |
double d, sinp, cosp; |
345 |
int maxiter, ntrials, nstarget, nstaken; |
346 |
int i; |
347 |
/* compute reflection */ |
348 |
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
349 |
rayorigin(&sr, RSPECULAR, np->rp, np->scolor) == 0) { |
350 |
SCOLOR scol; |
351 |
nstarget = 1; |
352 |
if (specjitter > 1.5) { /* multiple samples? */ |
353 |
nstarget = specjitter*np->rp->rweight + .5; |
354 |
if (sr.rweight <= minweight*nstarget) |
355 |
nstarget = sr.rweight/minweight; |
356 |
if (nstarget > 1) { |
357 |
d = 1./nstarget; |
358 |
scalescolor(sr.rcoef, d); |
359 |
sr.rweight *= d; |
360 |
} else |
361 |
nstarget = 1; |
362 |
} |
363 |
scolorblack(scol); |
364 |
dimlist[ndims++] = (int)(size_t)np->mp; |
365 |
maxiter = MAXITER*nstarget; |
366 |
for (nstaken = ntrials = 0; (nstaken < nstarget) & |
367 |
(ntrials < maxiter); ntrials++) { |
368 |
if (ntrials) |
369 |
d = frandom(); |
370 |
else |
371 |
d = urand(ilhash(dimlist,ndims)+samplendx); |
372 |
multisamp(rv, 2, d); |
373 |
d = 2.0*PI * rv[0]; |
374 |
cosp = tcos(d) * np->u_alpha; |
375 |
sinp = tsin(d) * np->v_alpha; |
376 |
d = 1./sqrt(cosp*cosp + sinp*sinp); |
377 |
cosp *= d; |
378 |
sinp *= d; |
379 |
if ((0. <= specjitter) & (specjitter < 1.)) |
380 |
rv[1] = 1.0 - specjitter*rv[1]; |
381 |
d = (rv[1] <= FTINY) ? 1.0 : sqrt( -log(rv[1]) / |
382 |
(cosp*cosp/(np->u_alpha*np->u_alpha) + |
383 |
sinp*sinp/(np->v_alpha*np->v_alpha)) ); |
384 |
for (i = 0; i < 3; i++) |
385 |
h[i] = np->pnorm[i] + |
386 |
d*(cosp*np->u[i] + sinp*np->v[i]); |
387 |
d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d); |
388 |
VSUM(sr.rdir, np->rp->rdir, h, d); |
389 |
/* sample rejection test */ |
390 |
if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY) |
391 |
continue; |
392 |
checknorm(sr.rdir); |
393 |
if (nstarget > 1) { /* W-G-M-D adjustment */ |
394 |
if (nstaken) rayclear(&sr); |
395 |
rayvalue(&sr); |
396 |
d = 2./(1. + np->rp->rod/d); |
397 |
scalescolor(sr.rcol, d); |
398 |
saddscolor(scol, sr.rcol); |
399 |
} else { |
400 |
rayvalue(&sr); |
401 |
smultscolor(sr.rcol, sr.rcoef); |
402 |
saddscolor(np->rp->rcol, sr.rcol); |
403 |
} |
404 |
++nstaken; |
405 |
} |
406 |
if (nstarget > 1) { /* final W-G-M-D weighting */ |
407 |
smultscolor(scol, sr.rcoef); |
408 |
d = (double)nstarget/ntrials; |
409 |
scalescolor(scol, d); |
410 |
saddscolor(np->rp->rcol, scol); |
411 |
} |
412 |
ndims--; |
413 |
} |
414 |
/* compute transmission */ |
415 |
copyscolor(sr.rcoef, np->mcolor); /* modify by material color */ |
416 |
scalescolor(sr.rcoef, np->tspec); |
417 |
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
418 |
rayorigin(&sr, TSPECULAR, np->rp, sr.rcoef) == 0) { |
419 |
nstarget = 1; |
420 |
if (specjitter > 1.5) { /* multiple samples? */ |
421 |
nstarget = specjitter*np->rp->rweight + .5; |
422 |
if (sr.rweight <= minweight*nstarget) |
423 |
nstarget = sr.rweight/minweight; |
424 |
if (nstarget > 1) { |
425 |
d = 1./nstarget; |
426 |
scalescolor(sr.rcoef, d); |
427 |
sr.rweight *= d; |
428 |
} else |
429 |
nstarget = 1; |
430 |
} |
431 |
dimlist[ndims++] = (int)(size_t)np->mp; |
432 |
maxiter = MAXITER*nstarget; |
433 |
for (nstaken = ntrials = 0; (nstaken < nstarget) & |
434 |
(ntrials < maxiter); ntrials++) { |
435 |
if (ntrials) |
436 |
d = frandom(); |
437 |
else |
438 |
d = urand(ilhash(dimlist,ndims)+1823+samplendx); |
439 |
multisamp(rv, 2, d); |
440 |
d = 2.0*PI * rv[0]; |
441 |
cosp = tcos(d) * np->u_alpha; |
442 |
sinp = tsin(d) * np->v_alpha; |
443 |
d = 1./sqrt(cosp*cosp + sinp*sinp); |
444 |
cosp *= d; |
445 |
sinp *= d; |
446 |
if ((0. <= specjitter) & (specjitter < 1.)) |
447 |
rv[1] = 1.0 - specjitter*rv[1]; |
448 |
if (rv[1] <= FTINY) |
449 |
d = 1.0; |
450 |
else |
451 |
d = sqrt(-log(rv[1]) / |
452 |
(cosp*cosp/(np->u_alpha*np->u_alpha) + |
453 |
sinp*sinp/(np->v_alpha*np->v_alpha))); |
454 |
for (i = 0; i < 3; i++) |
455 |
sr.rdir[i] = np->prdir[i] + |
456 |
d*(cosp*np->u[i] + sinp*np->v[i]); |
457 |
if (DOT(sr.rdir,np->rp->ron) >= -FTINY) |
458 |
continue; /* reject sample */ |
459 |
normalize(sr.rdir); /* OK, normalize */ |
460 |
if (nstaken) /* multi-sampling */ |
461 |
rayclear(&sr); |
462 |
rayvalue(&sr); |
463 |
smultscolor(sr.rcol, sr.rcoef); |
464 |
saddscolor(np->rp->rcol, sr.rcol); |
465 |
++nstaken; |
466 |
} |
467 |
ndims--; |
468 |
} |
469 |
} |