ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.68
Committed: Fri Dec 20 16:29:50 2024 UTC (4 months, 1 week ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.67: +2 -2 lines
Log Message:
perf: Adjustment to source spread in lobe speculars that accounts for -dj

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: aniso.c,v 2.67 2024/12/19 23:25:28 greg Exp $";
3 #endif
4 /*
5 * Shading functions for anisotropic materials.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "otypes.h"
13 #include "rtotypes.h"
14 #include "source.h"
15 #include "func.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 #ifndef MAXITER
20 #define MAXITER 10 /* maximum # specular ray attempts */
21 #endif
22
23 /*
24 * This routine implements the anisotropic Gaussian
25 * model described by Ward in Siggraph `92 article, updated with
26 * normalization and sampling adjustments due to Geisler-Moroder and Duer.
27 * We orient the surface towards the incoming ray, so a single
28 * surface can be used to represent an infinitely thin object.
29 *
30 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
31 * 4+ ux uy uz funcfile [transform...]
32 * 0
33 * 6 red grn blu specular-frac. u-rough v-rough
34 *
35 * Real arguments for MAT_TRANS2 are:
36 * 8 red grn blu rspec u-rough v-rough trans tspec
37 */
38
39 /* specularity flags */
40 #define SP_REFL 01 /* has reflected specular component */
41 #define SP_TRAN 02 /* has transmitted specular */
42 #define SP_FLAT 04 /* reflecting surface is flat */
43 #define SP_RBLT 010 /* reflection below sample threshold */
44 #define SP_TBLT 020 /* transmission below threshold */
45
46 typedef struct {
47 OBJREC *mp; /* material pointer */
48 RAY *rp; /* ray pointer */
49 short specfl; /* specularity flags, defined above */
50 SCOLOR mcolor; /* color of this material */
51 SCOLOR scolor; /* color of specular component */
52 FVECT prdir; /* vector in transmitted direction */
53 FVECT u, v; /* u and v vectors orienting anisotropy */
54 double u_alpha; /* u roughness */
55 double v_alpha; /* v roughness */
56 double rdiff, rspec; /* reflected specular, diffuse */
57 double trans; /* transmissivity */
58 double tdiff, tspec; /* transmitted specular, diffuse */
59 FVECT pnorm; /* perturbed surface normal */
60 double pdot; /* perturbed dot product */
61 } ANISODAT; /* anisotropic material data */
62
63 static void getacoords(ANISODAT *np);
64 static void agaussamp(ANISODAT *np);
65
66
67 static void
68 diraniso( /* compute source contribution */
69 SCOLOR scval, /* returned coefficient */
70 void *nnp, /* material data */
71 FVECT ldir, /* light source direction */
72 double omega /* light source size */
73 )
74 {
75 ANISODAT *np = nnp;
76 double ldot;
77 double dtmp, dtmp1, dtmp2;
78 FVECT h;
79 double au2, av2;
80 SCOLOR sctmp;
81
82 scolorblack(scval);
83
84 ldot = DOT(np->pnorm, ldir);
85
86 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
87 return; /* wrong side */
88
89 if ((ldot > FTINY) & (np->rdiff > FTINY)) {
90 /*
91 * Compute and add diffuse reflected component to returned
92 * color. The diffuse reflected component will always be
93 * modified by the color of the material.
94 */
95 copyscolor(sctmp, np->mcolor);
96 dtmp = ldot * omega * np->rdiff * (1.0/PI);
97 scalescolor(sctmp, dtmp);
98 saddscolor(scval, sctmp);
99 }
100
101 if ((ldot < -FTINY) & (np->tdiff > FTINY)) {
102 /*
103 * Compute diffuse transmission.
104 */
105 copyscolor(sctmp, np->mcolor);
106 dtmp = -ldot * omega * np->tdiff * (1.0/PI);
107 scalescolor(sctmp, dtmp);
108 saddscolor(scval, sctmp);
109 }
110
111 if (ambRayInPmap(np->rp))
112 return; /* specular accounted for in photon map */
113
114 if (ldot > FTINY && np->specfl&SP_REFL) {
115 /*
116 * Compute specular reflection coefficient using
117 * anisotropic Gaussian distribution model.
118 */
119 /* add source width if flat */
120 if (np->specfl & SP_FLAT)
121 au2 = av2 = (1. - dstrsrc) * omega * (0.25/PI);
122 else
123 au2 = av2 = 0.0;
124 au2 += np->u_alpha*np->u_alpha;
125 av2 += np->v_alpha*np->v_alpha;
126 /* half vector */
127 VSUB(h, ldir, np->rp->rdir);
128 /* ellipse */
129 dtmp1 = DOT(np->u, h);
130 dtmp1 *= dtmp1 / au2;
131 dtmp2 = DOT(np->v, h);
132 dtmp2 *= dtmp2 / av2;
133 /* new W-G-M-D model */
134 dtmp = DOT(np->pnorm, h);
135 dtmp *= dtmp;
136 dtmp1 = (dtmp1 + dtmp2) / dtmp;
137 dtmp = exp(-dtmp1) * DOT(h,h) /
138 (PI * dtmp*dtmp * sqrt(au2*av2));
139 /* worth using? */
140 if (dtmp > FTINY) {
141 copyscolor(sctmp, np->scolor);
142 dtmp *= ldot * omega;
143 scalescolor(sctmp, dtmp);
144 saddscolor(scval, sctmp);
145 }
146 }
147
148 if (ldot < -FTINY && np->specfl&SP_TRAN) {
149 /*
150 * Compute specular transmission. Specular transmission
151 * is always modified by material color.
152 */
153 /* roughness + source */
154 au2 = av2 = omega * (1.0/PI);
155 au2 += np->u_alpha*np->u_alpha;
156 av2 += np->v_alpha*np->v_alpha;
157 /* "half vector" */
158 VSUB(h, ldir, np->prdir);
159 dtmp = DOT(h,h);
160 if (dtmp > FTINY*FTINY) {
161 dtmp1 = DOT(h,np->pnorm);
162 dtmp = 1.0 - dtmp1*dtmp1/dtmp;
163 }
164 if (dtmp > FTINY*FTINY) {
165 dtmp1 = DOT(h,np->u);
166 dtmp1 *= dtmp1 / au2;
167 dtmp2 = DOT(h,np->v);
168 dtmp2 *= dtmp2 / av2;
169 dtmp = (dtmp1 + dtmp2) / dtmp;
170 dtmp = exp(-dtmp);
171 } else
172 dtmp = 1.0;
173 /* Gaussian */
174 dtmp *= (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2));
175 /* worth using? */
176 if (dtmp > FTINY) {
177 copyscolor(sctmp, np->mcolor);
178 dtmp *= np->tspec * omega;
179 scalescolor(sctmp, dtmp);
180 saddscolor(scval, sctmp);
181 }
182 }
183 }
184
185
186 int
187 m_aniso( /* shade ray that hit something anisotropic */
188 OBJREC *m,
189 RAY *r
190 )
191 {
192 ANISODAT nd;
193 SCOLOR sctmp;
194 int i;
195 /* easy shadow test */
196 if (r->crtype & SHADOW)
197 return(1);
198
199 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
200 objerror(m, USER, "bad number of real arguments");
201 /* check for back side */
202 if (r->rod < 0.0) {
203 if (!backvis) {
204 raytrans(r);
205 return(1);
206 }
207 raytexture(r, m->omod);
208 flipsurface(r); /* reorient if backvis */
209 } else
210 raytexture(r, m->omod);
211 /* get material color */
212 nd.mp = m;
213 nd.rp = r;
214 setscolor(nd.mcolor, m->oargs.farg[0],
215 m->oargs.farg[1],
216 m->oargs.farg[2]);
217 /* get roughness */
218 nd.specfl = 0;
219 nd.u_alpha = m->oargs.farg[4];
220 nd.v_alpha = m->oargs.farg[5];
221 if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY))
222 objerror(m, USER, "roughness too small");
223
224 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
225 if (nd.pdot < .001)
226 nd.pdot = .001; /* non-zero for diraniso() */
227 smultscolor(nd.mcolor, r->pcol); /* modify material color */
228 /* get specular component */
229 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
230 nd.specfl |= SP_REFL;
231 /* compute specular color */
232 if (m->otype == MAT_METAL2)
233 copyscolor(nd.scolor, nd.mcolor);
234 else
235 setscolor(nd.scolor, 1.0, 1.0, 1.0);
236 scalescolor(nd.scolor, nd.rspec);
237 /* check threshold */
238 if (specthresh >= nd.rspec-FTINY)
239 nd.specfl |= SP_RBLT;
240 }
241 /* compute transmission */
242 if (m->otype == MAT_TRANS2) {
243 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
244 nd.tspec = nd.trans * m->oargs.farg[7];
245 nd.tdiff = nd.trans - nd.tspec;
246 if (nd.tspec > FTINY) {
247 nd.specfl |= SP_TRAN;
248 /* check threshold */
249 if (specthresh >= nd.tspec-FTINY)
250 nd.specfl |= SP_TBLT;
251 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
252 VCOPY(nd.prdir, r->rdir);
253 } else {
254 for (i = 0; i < 3; i++) /* perturb */
255 nd.prdir[i] = r->rdir[i] - r->pert[i];
256 if (DOT(nd.prdir, r->ron) < -FTINY)
257 normalize(nd.prdir); /* OK */
258 else
259 VCOPY(nd.prdir, r->rdir);
260 }
261 }
262 } else
263 nd.tdiff = nd.tspec = nd.trans = 0.0;
264
265 /* diffuse reflection */
266 nd.rdiff = 1.0 - nd.trans - nd.rspec;
267
268 if (r->ro != NULL && isflat(r->ro->otype) &&
269 DOT(r->pert,r->pert) <= FTINY*FTINY)
270 nd.specfl |= SP_FLAT;
271
272 getacoords(&nd); /* set up coordinates */
273
274 if (nd.specfl & (SP_REFL|SP_TRAN))
275 agaussamp(&nd);
276
277 if (nd.rdiff > FTINY) { /* ambient from this side */
278 copyscolor(sctmp, nd.mcolor); /* modified by material color */
279 scalescolor(sctmp, nd.rdiff);
280 if (nd.specfl & SP_RBLT) /* add in specular as well? */
281 saddscolor(sctmp, nd.scolor);
282 multambient(sctmp, r, nd.pnorm);
283 saddscolor(r->rcol, sctmp); /* add to returned color */
284 }
285
286 if (nd.tdiff > FTINY) { /* ambient from other side */
287 FVECT bnorm;
288 bnorm[0] = -nd.pnorm[0];
289 bnorm[1] = -nd.pnorm[1];
290 bnorm[2] = -nd.pnorm[2];
291 copyscolor(sctmp, nd.mcolor); /* modified by color */
292 if (nd.specfl & SP_TBLT) {
293 scalescolor(sctmp, nd.trans);
294 } else {
295 scalescolor(sctmp, nd.tdiff);
296 }
297 multambient(sctmp, r, bnorm);
298 saddscolor(r->rcol, sctmp);
299 }
300 /* add direct component */
301 direct(r, diraniso, &nd);
302
303 return(1);
304 }
305
306 static void
307 getacoords( /* set up coordinate system */
308 ANISODAT *np
309 )
310 {
311 MFUNC *mf;
312 int i;
313
314 mf = getfunc(np->mp, 3, 0x7, 1);
315 setfunc(np->mp, np->rp);
316 errno = 0;
317 for (i = 0; i < 3; i++)
318 np->u[i] = evalue(mf->ep[i]);
319 if ((errno == EDOM) | (errno == ERANGE))
320 np->u[0] = np->u[1] = np->u[2] = 0.0;
321 else if (mf->fxp != &unitxf)
322 multv3(np->u, np->u, mf->fxp->xfm);
323 fcross(np->v, np->pnorm, np->u);
324 if (normalize(np->v) == 0.0) {
325 if (fabs(np->u_alpha - np->v_alpha) > 0.001)
326 objerror(np->mp, WARNING, "illegal orientation vector");
327 getperpendicular(np->u, np->pnorm, 1); /* punting */
328 fcross(np->v, np->pnorm, np->u);
329 np->u_alpha = np->v_alpha = sqrt( 0.5 *
330 (np->u_alpha*np->u_alpha + np->v_alpha*np->v_alpha) );
331 } else
332 fcross(np->u, np->v, np->pnorm);
333 }
334
335
336 static void
337 agaussamp( /* sample anisotropic Gaussian specular */
338 ANISODAT *np
339 )
340 {
341 RAY sr;
342 FVECT h;
343 double rv[2];
344 double d, sinp, cosp;
345 int maxiter, ntrials, nstarget, nstaken;
346 int i;
347 /* compute reflection */
348 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
349 rayorigin(&sr, RSPECULAR, np->rp, np->scolor) == 0) {
350 SCOLOR scol;
351 nstarget = 1;
352 if (specjitter > 1.5) { /* multiple samples? */
353 nstarget = specjitter*np->rp->rweight + .5;
354 if (sr.rweight <= minweight*nstarget)
355 nstarget = sr.rweight/minweight;
356 if (nstarget > 1) {
357 d = 1./nstarget;
358 scalescolor(sr.rcoef, d);
359 sr.rweight *= d;
360 } else
361 nstarget = 1;
362 }
363 scolorblack(scol);
364 dimlist[ndims++] = (int)(size_t)np->mp;
365 maxiter = MAXITER*nstarget;
366 for (nstaken = ntrials = 0; (nstaken < nstarget) &
367 (ntrials < maxiter); ntrials++) {
368 if (ntrials)
369 d = frandom();
370 else
371 d = urand(ilhash(dimlist,ndims)+samplendx);
372 multisamp(rv, 2, d);
373 d = 2.0*PI * rv[0];
374 cosp = tcos(d) * np->u_alpha;
375 sinp = tsin(d) * np->v_alpha;
376 d = 1./sqrt(cosp*cosp + sinp*sinp);
377 cosp *= d;
378 sinp *= d;
379 if ((0. <= specjitter) & (specjitter < 1.))
380 rv[1] = 1.0 - specjitter*rv[1];
381 d = (rv[1] <= FTINY) ? 1.0 : sqrt( -log(rv[1]) /
382 (cosp*cosp/(np->u_alpha*np->u_alpha) +
383 sinp*sinp/(np->v_alpha*np->v_alpha)) );
384 for (i = 0; i < 3; i++)
385 h[i] = np->pnorm[i] +
386 d*(cosp*np->u[i] + sinp*np->v[i]);
387 d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
388 VSUM(sr.rdir, np->rp->rdir, h, d);
389 /* sample rejection test */
390 if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
391 continue;
392 checknorm(sr.rdir);
393 if (nstarget > 1) { /* W-G-M-D adjustment */
394 if (nstaken) rayclear(&sr);
395 rayvalue(&sr);
396 d = 2./(1. + np->rp->rod/d);
397 scalescolor(sr.rcol, d);
398 saddscolor(scol, sr.rcol);
399 } else {
400 rayvalue(&sr);
401 smultscolor(sr.rcol, sr.rcoef);
402 saddscolor(np->rp->rcol, sr.rcol);
403 }
404 ++nstaken;
405 }
406 if (nstarget > 1) { /* final W-G-M-D weighting */
407 smultscolor(scol, sr.rcoef);
408 d = (double)nstarget/ntrials;
409 scalescolor(scol, d);
410 saddscolor(np->rp->rcol, scol);
411 }
412 ndims--;
413 }
414 /* compute transmission */
415 copyscolor(sr.rcoef, np->mcolor); /* modify by material color */
416 scalescolor(sr.rcoef, np->tspec);
417 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
418 rayorigin(&sr, TSPECULAR, np->rp, sr.rcoef) == 0) {
419 nstarget = 1;
420 if (specjitter > 1.5) { /* multiple samples? */
421 nstarget = specjitter*np->rp->rweight + .5;
422 if (sr.rweight <= minweight*nstarget)
423 nstarget = sr.rweight/minweight;
424 if (nstarget > 1) {
425 d = 1./nstarget;
426 scalescolor(sr.rcoef, d);
427 sr.rweight *= d;
428 } else
429 nstarget = 1;
430 }
431 dimlist[ndims++] = (int)(size_t)np->mp;
432 maxiter = MAXITER*nstarget;
433 for (nstaken = ntrials = 0; (nstaken < nstarget) &
434 (ntrials < maxiter); ntrials++) {
435 if (ntrials)
436 d = frandom();
437 else
438 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
439 multisamp(rv, 2, d);
440 d = 2.0*PI * rv[0];
441 cosp = tcos(d) * np->u_alpha;
442 sinp = tsin(d) * np->v_alpha;
443 d = 1./sqrt(cosp*cosp + sinp*sinp);
444 cosp *= d;
445 sinp *= d;
446 if ((0. <= specjitter) & (specjitter < 1.))
447 rv[1] = 1.0 - specjitter*rv[1];
448 if (rv[1] <= FTINY)
449 d = 1.0;
450 else
451 d = sqrt(-log(rv[1]) /
452 (cosp*cosp/(np->u_alpha*np->u_alpha) +
453 sinp*sinp/(np->v_alpha*np->v_alpha)));
454 for (i = 0; i < 3; i++)
455 sr.rdir[i] = np->prdir[i] +
456 d*(cosp*np->u[i] + sinp*np->v[i]);
457 if (DOT(sr.rdir,np->rp->ron) >= -FTINY)
458 continue; /* reject sample */
459 normalize(sr.rdir); /* OK, normalize */
460 if (nstaken) /* multi-sampling */
461 rayclear(&sr);
462 rayvalue(&sr);
463 smultscolor(sr.rcol, sr.rcoef);
464 saddscolor(np->rp->rcol, sr.rcol);
465 ++nstaken;
466 }
467 ndims--;
468 }
469 }