1 |
greg |
2.1 |
/* Copyright (c) 1992 Regents of the University of California */ |
2 |
|
|
|
3 |
|
|
#ifndef lint |
4 |
|
|
static char SCCSid[] = "$SunId$ LBL"; |
5 |
|
|
#endif |
6 |
|
|
|
7 |
|
|
/* |
8 |
|
|
* Shading functions for anisotropic materials. |
9 |
|
|
*/ |
10 |
|
|
|
11 |
|
|
#include "ray.h" |
12 |
|
|
|
13 |
|
|
#include "otypes.h" |
14 |
|
|
|
15 |
|
|
#include "func.h" |
16 |
|
|
|
17 |
|
|
#include "random.h" |
18 |
|
|
|
19 |
greg |
2.4 |
extern double specthresh; /* specular sampling threshold */ |
20 |
|
|
extern double specjitter; /* specular sampling jitter */ |
21 |
|
|
|
22 |
greg |
2.1 |
/* |
23 |
|
|
* This anisotropic reflection model uses a variant on the |
24 |
|
|
* exponential Gaussian used in normal.c. |
25 |
|
|
* We orient the surface towards the incoming ray, so a single |
26 |
|
|
* surface can be used to represent an infinitely thin object. |
27 |
|
|
* |
28 |
|
|
* Arguments for MAT_PLASTIC2 and MAT_METAL2 are: |
29 |
|
|
* 4+ ux uy uz funcfile [transform...] |
30 |
|
|
* 0 |
31 |
|
|
* 6 red grn blu specular-frac. u-facet-slope v-facet-slope |
32 |
|
|
* |
33 |
|
|
* Real arguments for MAT_TRANS2 are: |
34 |
|
|
* 8 red grn blu rspec u-rough v-rough trans tspec |
35 |
|
|
*/ |
36 |
|
|
|
37 |
|
|
#define BSPEC(m) (6.0) /* specularity parameter b */ |
38 |
|
|
|
39 |
|
|
/* specularity flags */ |
40 |
|
|
#define SP_REFL 01 /* has reflected specular component */ |
41 |
|
|
#define SP_TRAN 02 /* has transmitted specular */ |
42 |
|
|
#define SP_PURE 010 /* purely specular (zero roughness) */ |
43 |
greg |
2.4 |
#define SP_FLAT 020 /* reflecting surface is flat */ |
44 |
|
|
#define SP_RBLT 040 /* reflection below sample threshold */ |
45 |
|
|
#define SP_TBLT 0100 /* transmission below threshold */ |
46 |
|
|
#define SP_BADU 0200 /* bad u direction calculation */ |
47 |
greg |
2.1 |
|
48 |
|
|
typedef struct { |
49 |
greg |
2.2 |
OBJREC *mp; /* material pointer */ |
50 |
greg |
2.1 |
RAY *rp; /* ray pointer */ |
51 |
|
|
short specfl; /* specularity flags, defined above */ |
52 |
|
|
COLOR mcolor; /* color of this material */ |
53 |
|
|
COLOR scolor; /* color of specular component */ |
54 |
greg |
2.6 |
FVECT vrefl; /* vector in reflected direction */ |
55 |
greg |
2.1 |
FVECT prdir; /* vector in transmitted direction */ |
56 |
|
|
FVECT u, v; /* u and v vectors orienting anisotropy */ |
57 |
|
|
double u_alpha; /* u roughness */ |
58 |
|
|
double v_alpha; /* v roughness */ |
59 |
|
|
double rdiff, rspec; /* reflected specular, diffuse */ |
60 |
|
|
double trans; /* transmissivity */ |
61 |
|
|
double tdiff, tspec; /* transmitted specular, diffuse */ |
62 |
|
|
FVECT pnorm; /* perturbed surface normal */ |
63 |
|
|
double pdot; /* perturbed dot product */ |
64 |
|
|
} ANISODAT; /* anisotropic material data */ |
65 |
|
|
|
66 |
|
|
|
67 |
|
|
diraniso(cval, np, ldir, omega) /* compute source contribution */ |
68 |
|
|
COLOR cval; /* returned coefficient */ |
69 |
|
|
register ANISODAT *np; /* material data */ |
70 |
|
|
FVECT ldir; /* light source direction */ |
71 |
|
|
double omega; /* light source size */ |
72 |
|
|
{ |
73 |
|
|
double ldot; |
74 |
|
|
double dtmp, dtmp2; |
75 |
|
|
FVECT h; |
76 |
|
|
double au2, av2; |
77 |
|
|
COLOR ctmp; |
78 |
|
|
|
79 |
|
|
setcolor(cval, 0.0, 0.0, 0.0); |
80 |
|
|
|
81 |
|
|
ldot = DOT(np->pnorm, ldir); |
82 |
|
|
|
83 |
|
|
if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) |
84 |
|
|
return; /* wrong side */ |
85 |
|
|
|
86 |
|
|
if (ldot > FTINY && np->rdiff > FTINY) { |
87 |
|
|
/* |
88 |
|
|
* Compute and add diffuse reflected component to returned |
89 |
|
|
* color. The diffuse reflected component will always be |
90 |
|
|
* modified by the color of the material. |
91 |
|
|
*/ |
92 |
|
|
copycolor(ctmp, np->mcolor); |
93 |
|
|
dtmp = ldot * omega * np->rdiff / PI; |
94 |
|
|
scalecolor(ctmp, dtmp); |
95 |
|
|
addcolor(cval, ctmp); |
96 |
|
|
} |
97 |
|
|
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE|SP_BADU)) == SP_REFL) { |
98 |
|
|
/* |
99 |
|
|
* Compute specular reflection coefficient using |
100 |
|
|
* anisotropic gaussian distribution model. |
101 |
|
|
*/ |
102 |
greg |
2.2 |
/* add source width if flat */ |
103 |
|
|
if (np->specfl & SP_FLAT) |
104 |
|
|
au2 = av2 = omega/(4.0*PI); |
105 |
|
|
else |
106 |
|
|
au2 = av2 = 0.0; |
107 |
greg |
2.1 |
au2 += np->u_alpha * np->u_alpha; |
108 |
|
|
av2 += np->v_alpha * np->v_alpha; |
109 |
|
|
/* half vector */ |
110 |
|
|
h[0] = ldir[0] - np->rp->rdir[0]; |
111 |
|
|
h[1] = ldir[1] - np->rp->rdir[1]; |
112 |
|
|
h[2] = ldir[2] - np->rp->rdir[2]; |
113 |
|
|
normalize(h); |
114 |
|
|
/* ellipse */ |
115 |
|
|
dtmp = DOT(np->u, h); |
116 |
|
|
dtmp *= dtmp / au2; |
117 |
|
|
dtmp2 = DOT(np->v, h); |
118 |
|
|
dtmp2 *= dtmp2 / av2; |
119 |
|
|
/* gaussian */ |
120 |
|
|
dtmp = (dtmp + dtmp2) / (1.0 + DOT(np->pnorm, h)); |
121 |
|
|
dtmp = exp(-2.0*dtmp) / (4.0*PI * sqrt(au2*av2)); |
122 |
|
|
/* worth using? */ |
123 |
|
|
if (dtmp > FTINY) { |
124 |
|
|
copycolor(ctmp, np->scolor); |
125 |
|
|
dtmp *= omega / np->pdot; |
126 |
|
|
scalecolor(ctmp, dtmp); |
127 |
|
|
addcolor(cval, ctmp); |
128 |
|
|
} |
129 |
|
|
} |
130 |
|
|
if (ldot < -FTINY && np->tdiff > FTINY) { |
131 |
|
|
/* |
132 |
|
|
* Compute diffuse transmission. |
133 |
|
|
*/ |
134 |
|
|
copycolor(ctmp, np->mcolor); |
135 |
|
|
dtmp = -ldot * omega * np->tdiff / PI; |
136 |
|
|
scalecolor(ctmp, dtmp); |
137 |
|
|
addcolor(cval, ctmp); |
138 |
|
|
} |
139 |
|
|
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE|SP_BADU)) == SP_TRAN) { |
140 |
|
|
/* |
141 |
|
|
* Compute specular transmission. Specular transmission |
142 |
|
|
* is always modified by material color. |
143 |
|
|
*/ |
144 |
|
|
/* roughness + source */ |
145 |
|
|
/* gaussian */ |
146 |
|
|
dtmp = 0.0; |
147 |
|
|
/* worth using? */ |
148 |
|
|
if (dtmp > FTINY) { |
149 |
|
|
copycolor(ctmp, np->mcolor); |
150 |
|
|
dtmp *= np->tspec * omega / np->pdot; |
151 |
|
|
scalecolor(ctmp, dtmp); |
152 |
|
|
addcolor(cval, ctmp); |
153 |
|
|
} |
154 |
|
|
} |
155 |
|
|
} |
156 |
|
|
|
157 |
|
|
|
158 |
|
|
m_aniso(m, r) /* shade ray that hit something anisotropic */ |
159 |
|
|
register OBJREC *m; |
160 |
|
|
register RAY *r; |
161 |
|
|
{ |
162 |
|
|
ANISODAT nd; |
163 |
|
|
double transtest, transdist; |
164 |
|
|
double dtmp; |
165 |
|
|
COLOR ctmp; |
166 |
|
|
register int i; |
167 |
|
|
/* easy shadow test */ |
168 |
|
|
if (r->crtype & SHADOW && m->otype != MAT_TRANS2) |
169 |
|
|
return; |
170 |
|
|
|
171 |
|
|
if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6)) |
172 |
|
|
objerror(m, USER, "bad number of real arguments"); |
173 |
greg |
2.2 |
nd.mp = m; |
174 |
greg |
2.1 |
nd.rp = r; |
175 |
|
|
/* get material color */ |
176 |
|
|
setcolor(nd.mcolor, m->oargs.farg[0], |
177 |
|
|
m->oargs.farg[1], |
178 |
|
|
m->oargs.farg[2]); |
179 |
|
|
/* get roughness */ |
180 |
|
|
nd.specfl = 0; |
181 |
|
|
nd.u_alpha = m->oargs.farg[4]; |
182 |
|
|
nd.v_alpha = m->oargs.farg[5]; |
183 |
|
|
if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY) |
184 |
|
|
nd.specfl |= SP_PURE; |
185 |
|
|
/* reorient if necessary */ |
186 |
|
|
if (r->rod < 0.0) |
187 |
|
|
flipsurface(r); |
188 |
|
|
/* get modifiers */ |
189 |
|
|
raytexture(r, m->omod); |
190 |
|
|
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ |
191 |
|
|
if (nd.pdot < .001) |
192 |
|
|
nd.pdot = .001; /* non-zero for diraniso() */ |
193 |
|
|
multcolor(nd.mcolor, r->pcol); /* modify material color */ |
194 |
|
|
transtest = 0; |
195 |
|
|
/* get specular component */ |
196 |
|
|
if ((nd.rspec = m->oargs.farg[3]) > FTINY) { |
197 |
|
|
nd.specfl |= SP_REFL; |
198 |
|
|
/* compute specular color */ |
199 |
|
|
if (m->otype == MAT_METAL2) |
200 |
|
|
copycolor(nd.scolor, nd.mcolor); |
201 |
|
|
else |
202 |
|
|
setcolor(nd.scolor, 1.0, 1.0, 1.0); |
203 |
|
|
scalecolor(nd.scolor, nd.rspec); |
204 |
|
|
/* improved model */ |
205 |
|
|
dtmp = exp(-BSPEC(m)*nd.pdot); |
206 |
|
|
for (i = 0; i < 3; i++) |
207 |
|
|
colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp; |
208 |
|
|
nd.rspec += (1.0-nd.rspec)*dtmp; |
209 |
greg |
2.4 |
/* check threshold */ |
210 |
greg |
2.5 |
if (specthresh > FTINY && |
211 |
|
|
((specthresh >= 1.-FTINY || |
212 |
|
|
specthresh + (.1 - .2*urand(8199+samplendx)) |
213 |
|
|
> nd.rspec))) |
214 |
greg |
2.4 |
nd.specfl |= SP_RBLT; |
215 |
greg |
2.6 |
/* compute refl. direction */ |
216 |
|
|
for (i = 0; i < 3; i++) |
217 |
|
|
nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i]; |
218 |
|
|
if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */ |
219 |
|
|
for (i = 0; i < 3; i++) /* safety measure */ |
220 |
|
|
nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; |
221 |
greg |
2.1 |
|
222 |
|
|
if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) { |
223 |
|
|
RAY lr; |
224 |
|
|
if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) { |
225 |
greg |
2.6 |
VCOPY(lr.rdir, nd.vrefl); |
226 |
greg |
2.1 |
rayvalue(&lr); |
227 |
|
|
multcolor(lr.rcol, nd.scolor); |
228 |
|
|
addcolor(r->rcol, lr.rcol); |
229 |
|
|
} |
230 |
|
|
} |
231 |
|
|
} |
232 |
|
|
/* compute transmission */ |
233 |
|
|
if (m->otype == MAT_TRANS) { |
234 |
|
|
nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec); |
235 |
|
|
nd.tspec = nd.trans * m->oargs.farg[7]; |
236 |
|
|
nd.tdiff = nd.trans - nd.tspec; |
237 |
|
|
if (nd.tspec > FTINY) { |
238 |
|
|
nd.specfl |= SP_TRAN; |
239 |
greg |
2.4 |
/* check threshold */ |
240 |
greg |
2.5 |
if (specthresh > FTINY && |
241 |
|
|
((specthresh >= 1.-FTINY || |
242 |
|
|
specthresh + |
243 |
|
|
(.1 - .2*urand(7241+samplendx)) |
244 |
|
|
> nd.tspec))) |
245 |
greg |
2.4 |
nd.specfl |= SP_TBLT; |
246 |
greg |
2.1 |
if (r->crtype & SHADOW || |
247 |
|
|
DOT(r->pert,r->pert) <= FTINY*FTINY) { |
248 |
|
|
VCOPY(nd.prdir, r->rdir); |
249 |
|
|
transtest = 2; |
250 |
|
|
} else { |
251 |
|
|
for (i = 0; i < 3; i++) /* perturb */ |
252 |
|
|
nd.prdir[i] = r->rdir[i] - |
253 |
greg |
2.7 |
0.5*r->pert[i]; |
254 |
greg |
2.6 |
if (DOT(nd.prdir, r->ron) < -FTINY) |
255 |
|
|
normalize(nd.prdir); /* OK */ |
256 |
|
|
else |
257 |
|
|
VCOPY(nd.prdir, r->rdir); |
258 |
greg |
2.1 |
} |
259 |
|
|
} |
260 |
|
|
} else |
261 |
|
|
nd.tdiff = nd.tspec = nd.trans = 0.0; |
262 |
|
|
/* transmitted ray */ |
263 |
|
|
if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) { |
264 |
|
|
RAY lr; |
265 |
|
|
if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) { |
266 |
|
|
VCOPY(lr.rdir, nd.prdir); |
267 |
|
|
rayvalue(&lr); |
268 |
|
|
scalecolor(lr.rcol, nd.tspec); |
269 |
|
|
multcolor(lr.rcol, nd.mcolor); /* modified by color */ |
270 |
|
|
addcolor(r->rcol, lr.rcol); |
271 |
|
|
transtest *= bright(lr.rcol); |
272 |
|
|
transdist = r->rot + lr.rt; |
273 |
|
|
} |
274 |
|
|
} |
275 |
|
|
|
276 |
|
|
if (r->crtype & SHADOW) /* the rest is shadow */ |
277 |
|
|
return; |
278 |
|
|
/* diffuse reflection */ |
279 |
|
|
nd.rdiff = 1.0 - nd.trans - nd.rspec; |
280 |
|
|
|
281 |
|
|
if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) |
282 |
|
|
return; /* 100% pure specular */ |
283 |
|
|
|
284 |
greg |
2.4 |
if (r->ro->otype == OBJ_FACE || r->ro->otype == OBJ_RING) |
285 |
|
|
nd.specfl |= SP_FLAT; |
286 |
|
|
|
287 |
greg |
2.1 |
getacoords(r, &nd); /* set up coordinates */ |
288 |
|
|
|
289 |
|
|
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & (SP_PURE|SP_BADU))) |
290 |
|
|
agaussamp(r, &nd); |
291 |
|
|
|
292 |
|
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
293 |
|
|
ambient(ctmp, r); |
294 |
greg |
2.4 |
if (nd.specfl & SP_RBLT) |
295 |
|
|
scalecolor(ctmp, 1.0-nd.trans); |
296 |
|
|
else |
297 |
|
|
scalecolor(ctmp, nd.rdiff); |
298 |
greg |
2.1 |
multcolor(ctmp, nd.mcolor); /* modified by material color */ |
299 |
|
|
addcolor(r->rcol, ctmp); /* add to returned color */ |
300 |
|
|
} |
301 |
|
|
if (nd.tdiff > FTINY) { /* ambient from other side */ |
302 |
|
|
flipsurface(r); |
303 |
|
|
ambient(ctmp, r); |
304 |
greg |
2.4 |
if (nd.specfl & SP_TBLT) |
305 |
|
|
scalecolor(ctmp, nd.trans); |
306 |
|
|
else |
307 |
|
|
scalecolor(ctmp, nd.tdiff); |
308 |
greg |
2.1 |
multcolor(ctmp, nd.mcolor); /* modified by color */ |
309 |
|
|
addcolor(r->rcol, ctmp); |
310 |
|
|
flipsurface(r); |
311 |
|
|
} |
312 |
|
|
/* add direct component */ |
313 |
|
|
direct(r, diraniso, &nd); |
314 |
|
|
/* check distance */ |
315 |
|
|
if (transtest > bright(r->rcol)) |
316 |
|
|
r->rt = transdist; |
317 |
|
|
} |
318 |
|
|
|
319 |
|
|
|
320 |
|
|
static |
321 |
|
|
getacoords(r, np) /* set up coordinate system */ |
322 |
|
|
RAY *r; |
323 |
|
|
register ANISODAT *np; |
324 |
|
|
{ |
325 |
|
|
register MFUNC *mf; |
326 |
|
|
register int i; |
327 |
|
|
|
328 |
|
|
mf = getfunc(np->mp, 3, 0x7, 1); |
329 |
|
|
setfunc(np->mp, r); |
330 |
|
|
errno = 0; |
331 |
|
|
for (i = 0; i < 3; i++) |
332 |
|
|
np->u[i] = evalue(mf->ep[i]); |
333 |
|
|
if (errno) { |
334 |
|
|
objerror(np->mp, WARNING, "compute error"); |
335 |
|
|
np->specfl |= SP_BADU; |
336 |
|
|
return; |
337 |
|
|
} |
338 |
|
|
multv3(np->u, np->u, mf->f->xfm); |
339 |
|
|
fcross(np->v, np->pnorm, np->u); |
340 |
|
|
if (normalize(np->v) == 0.0) { |
341 |
|
|
objerror(np->mp, WARNING, "illegal orientation vector"); |
342 |
|
|
np->specfl |= SP_BADU; |
343 |
|
|
return; |
344 |
|
|
} |
345 |
|
|
fcross(np->u, np->v, np->pnorm); |
346 |
|
|
} |
347 |
|
|
|
348 |
|
|
|
349 |
|
|
static |
350 |
|
|
agaussamp(r, np) /* sample anisotropic gaussian specular */ |
351 |
|
|
RAY *r; |
352 |
|
|
register ANISODAT *np; |
353 |
|
|
{ |
354 |
|
|
RAY sr; |
355 |
|
|
FVECT h; |
356 |
|
|
double rv[2]; |
357 |
|
|
double d, sinp, cosp; |
358 |
|
|
register int i; |
359 |
|
|
/* compute reflection */ |
360 |
greg |
2.4 |
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
361 |
greg |
2.1 |
rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { |
362 |
|
|
dimlist[ndims++] = (int)np->mp; |
363 |
greg |
2.6 |
d = urand(ilhash(dimlist,ndims)+samplendx); |
364 |
|
|
multisamp(rv, 2, d); |
365 |
|
|
d = 2.0*PI * rv[0]; |
366 |
|
|
cosp = np->u_alpha * cos(d); |
367 |
|
|
sinp = np->v_alpha * sin(d); |
368 |
|
|
d = sqrt(cosp*cosp + sinp*sinp); |
369 |
|
|
cosp /= d; |
370 |
|
|
sinp /= d; |
371 |
|
|
rv[1] = 1.0 - specjitter*rv[1]; |
372 |
|
|
if (rv[1] <= FTINY) |
373 |
|
|
d = 1.0; |
374 |
|
|
else |
375 |
|
|
d = sqrt(-log(rv[1]) / |
376 |
|
|
(cosp*cosp/(np->u_alpha*np->u_alpha) + |
377 |
|
|
sinp*sinp/(np->v_alpha*np->v_alpha))); |
378 |
|
|
for (i = 0; i < 3; i++) |
379 |
|
|
h[i] = np->pnorm[i] + |
380 |
|
|
d*(cosp*np->u[i] + sinp*np->v[i]); |
381 |
|
|
d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); |
382 |
|
|
for (i = 0; i < 3; i++) |
383 |
|
|
sr.rdir[i] = r->rdir[i] + d*h[i]; |
384 |
|
|
if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */ |
385 |
|
|
VCOPY(sr.rdir, np->vrefl); /* jitter no good */ |
386 |
|
|
rayvalue(&sr); |
387 |
|
|
multcolor(sr.rcol, np->scolor); |
388 |
|
|
addcolor(r->rcol, sr.rcol); |
389 |
greg |
2.1 |
ndims--; |
390 |
|
|
} |
391 |
|
|
/* compute transmission */ |
392 |
greg |
2.7 |
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
393 |
|
|
rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { |
394 |
|
|
dimlist[ndims++] = (int)np->mp; |
395 |
|
|
d = urand(ilhash(dimlist,ndims)+1823+samplendx); |
396 |
|
|
multisamp(rv, 2, d); |
397 |
|
|
d = 2.0*PI * rv[0]; |
398 |
|
|
cosp = cos(d); |
399 |
|
|
sinp = sin(d); |
400 |
|
|
rv[1] = 1.0 - specjitter*rv[1]; |
401 |
|
|
if (rv[1] <= FTINY) |
402 |
|
|
d = 1.0; |
403 |
|
|
else |
404 |
|
|
d = sqrt(-log(rv[1]) / |
405 |
|
|
(cosp*cosp*4./(np->u_alpha*np->u_alpha) + |
406 |
|
|
sinp*sinp*4./(np->v_alpha*np->v_alpha))); |
407 |
|
|
for (i = 0; i < 3; i++) |
408 |
|
|
sr.rdir[i] = np->prdir[i] + |
409 |
|
|
d*(cosp*np->u[i] + sinp*np->v[i]); |
410 |
|
|
if (DOT(sr.rdir, r->ron) < -FTINY) |
411 |
|
|
normalize(sr.rdir); /* OK, normalize */ |
412 |
|
|
else |
413 |
|
|
VCOPY(sr.rdir, np->prdir); /* else no jitter */ |
414 |
|
|
rayvalue(&sr); |
415 |
|
|
multcolor(sr.rcol, np->scolor); |
416 |
|
|
addcolor(r->rcol, sr.rcol); |
417 |
|
|
ndims--; |
418 |
|
|
} |
419 |
greg |
2.1 |
} |