ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.61
Committed: Wed Sep 2 18:59:01 2015 UTC (8 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R4, rad5R2, rad5R0, rad5R1, rad5R3
Changes since 2.60: +5 -1 lines
Log Message:
Had to reinstate ambRayInPmap() macro to avoid over-counting bug

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.61 static const char RCSid[] = "$Id: aniso.c,v 2.60 2015/05/26 13:21:07 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading functions for anisotropic materials.
6     */
7    
8 greg 2.35 #include "copyright.h"
9 greg 2.34
10 greg 2.1 #include "ray.h"
11 greg 2.40 #include "ambient.h"
12 greg 2.1 #include "otypes.h"
13 schorsch 2.41 #include "rtotypes.h"
14     #include "source.h"
15 greg 2.1 #include "func.h"
16     #include "random.h"
17 greg 2.61 #include "pmapmat.h"
18 greg 2.1
19 greg 2.32 #ifndef MAXITER
20     #define MAXITER 10 /* maximum # specular ray attempts */
21     #endif
22    
23 greg 2.1 /*
24 greg 2.22 * This routine implements the anisotropic Gaussian
25 greg 2.54 * model described by Ward in Siggraph `92 article, updated with
26     * normalization and sampling adjustments due to Geisler-Moroder and Duer.
27 greg 2.1 * We orient the surface towards the incoming ray, so a single
28     * surface can be used to represent an infinitely thin object.
29     *
30     * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
31     * 4+ ux uy uz funcfile [transform...]
32     * 0
33 greg 2.54 * 6 red grn blu specular-frac. u-rough v-rough
34 greg 2.1 *
35     * Real arguments for MAT_TRANS2 are:
36     * 8 red grn blu rspec u-rough v-rough trans tspec
37     */
38    
39     /* specularity flags */
40     #define SP_REFL 01 /* has reflected specular component */
41     #define SP_TRAN 02 /* has transmitted specular */
42 greg 2.10 #define SP_FLAT 04 /* reflecting surface is flat */
43     #define SP_RBLT 010 /* reflection below sample threshold */
44     #define SP_TBLT 020 /* transmission below threshold */
45 greg 2.1
46     typedef struct {
47 greg 2.2 OBJREC *mp; /* material pointer */
48 greg 2.1 RAY *rp; /* ray pointer */
49     short specfl; /* specularity flags, defined above */
50     COLOR mcolor; /* color of this material */
51     COLOR scolor; /* color of specular component */
52 greg 2.6 FVECT vrefl; /* vector in reflected direction */
53 greg 2.1 FVECT prdir; /* vector in transmitted direction */
54     FVECT u, v; /* u and v vectors orienting anisotropy */
55 greg 2.18 double u_alpha; /* u roughness */
56     double v_alpha; /* v roughness */
57 greg 2.1 double rdiff, rspec; /* reflected specular, diffuse */
58     double trans; /* transmissivity */
59     double tdiff, tspec; /* transmitted specular, diffuse */
60     FVECT pnorm; /* perturbed surface normal */
61     double pdot; /* perturbed dot product */
62     } ANISODAT; /* anisotropic material data */
63    
64 greg 2.55 static void getacoords(ANISODAT *np);
65     static void agaussamp(ANISODAT *np);
66 greg 2.34
67 greg 2.1
68 greg 2.34 static void
69 schorsch 2.41 diraniso( /* compute source contribution */
70     COLOR cval, /* returned coefficient */
71 greg 2.54 void *nnp, /* material data */
72 schorsch 2.41 FVECT ldir, /* light source direction */
73     double omega /* light source size */
74     )
75 greg 2.1 {
76 greg 2.54 ANISODAT *np = nnp;
77 greg 2.1 double ldot;
78 greg 2.16 double dtmp, dtmp1, dtmp2;
79 greg 2.1 FVECT h;
80     double au2, av2;
81     COLOR ctmp;
82    
83     setcolor(cval, 0.0, 0.0, 0.0);
84    
85     ldot = DOT(np->pnorm, ldir);
86    
87     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
88     return; /* wrong side */
89    
90 greg 2.54 if ((ldot > FTINY) & (np->rdiff > FTINY)) {
91 greg 2.1 /*
92     * Compute and add diffuse reflected component to returned
93     * color. The diffuse reflected component will always be
94     * modified by the color of the material.
95     */
96     copycolor(ctmp, np->mcolor);
97 greg 2.42 dtmp = ldot * omega * np->rdiff * (1.0/PI);
98 greg 2.1 scalecolor(ctmp, dtmp);
99     addcolor(cval, ctmp);
100     }
101 greg 2.58
102     if ((ldot < -FTINY) & (np->tdiff > FTINY)) {
103     /*
104     * Compute diffuse transmission.
105     */
106     copycolor(ctmp, np->mcolor);
107     dtmp = -ldot * omega * np->tdiff * (1.0/PI);
108     scalecolor(ctmp, dtmp);
109     addcolor(cval, ctmp);
110     }
111    
112 greg 2.61 if (ambRayInPmap(np->rp))
113     return; /* specular accounted for in photon map */
114    
115 greg 2.57 if (ldot > FTINY && np->specfl&SP_REFL) {
116 greg 2.1 /*
117     * Compute specular reflection coefficient using
118 greg 2.46 * anisotropic Gaussian distribution model.
119 greg 2.1 */
120 greg 2.2 /* add source width if flat */
121     if (np->specfl & SP_FLAT)
122 greg 2.42 au2 = av2 = omega * (0.25/PI);
123 greg 2.2 else
124     au2 = av2 = 0.0;
125 greg 2.18 au2 += np->u_alpha*np->u_alpha;
126     av2 += np->v_alpha*np->v_alpha;
127 greg 2.1 /* half vector */
128 greg 2.54 VSUB(h, ldir, np->rp->rdir);
129 greg 2.1 /* ellipse */
130 greg 2.16 dtmp1 = DOT(np->u, h);
131     dtmp1 *= dtmp1 / au2;
132 greg 2.1 dtmp2 = DOT(np->v, h);
133     dtmp2 *= dtmp2 / av2;
134 greg 2.46 /* new W-G-M-D model */
135 greg 2.23 dtmp = DOT(np->pnorm, h);
136 greg 2.46 dtmp *= dtmp;
137     dtmp1 = (dtmp1 + dtmp2) / dtmp;
138     dtmp = exp(-dtmp1) * DOT(h,h) /
139     (PI * dtmp*dtmp * sqrt(au2*av2));
140 greg 2.1 /* worth using? */
141     if (dtmp > FTINY) {
142     copycolor(ctmp, np->scolor);
143 greg 2.46 dtmp *= ldot * omega;
144 greg 2.1 scalecolor(ctmp, dtmp);
145     addcolor(cval, ctmp);
146     }
147     }
148 greg 2.58
149 greg 2.57 if (ldot < -FTINY && np->specfl&SP_TRAN) {
150 greg 2.1 /*
151     * Compute specular transmission. Specular transmission
152     * is always modified by material color.
153     */
154     /* roughness + source */
155 greg 2.42 au2 = av2 = omega * (1.0/PI);
156 greg 2.18 au2 += np->u_alpha*np->u_alpha;
157     av2 += np->v_alpha*np->v_alpha;
158 greg 2.16 /* "half vector" */
159 greg 2.54 VSUB(h, ldir, np->prdir);
160 greg 2.19 dtmp = DOT(h,h);
161 greg 2.16 if (dtmp > FTINY*FTINY) {
162 greg 2.19 dtmp1 = DOT(h,np->pnorm);
163     dtmp = 1.0 - dtmp1*dtmp1/dtmp;
164     if (dtmp > FTINY*FTINY) {
165     dtmp1 = DOT(h,np->u);
166 greg 2.23 dtmp1 *= dtmp1 / au2;
167 greg 2.19 dtmp2 = DOT(h,np->v);
168 greg 2.23 dtmp2 *= dtmp2 / av2;
169 greg 2.19 dtmp = (dtmp1 + dtmp2) / dtmp;
170     }
171 greg 2.16 } else
172     dtmp = 0.0;
173 greg 2.46 /* Gaussian */
174 greg 2.44 dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2));
175 greg 2.1 /* worth using? */
176     if (dtmp > FTINY) {
177     copycolor(ctmp, np->mcolor);
178 greg 2.16 dtmp *= np->tspec * omega;
179 greg 2.1 scalecolor(ctmp, dtmp);
180     addcolor(cval, ctmp);
181     }
182     }
183     }
184    
185    
186 greg 2.54 int
187 schorsch 2.41 m_aniso( /* shade ray that hit something anisotropic */
188 greg 2.54 OBJREC *m,
189     RAY *r
190 schorsch 2.41 )
191 greg 2.1 {
192     ANISODAT nd;
193     COLOR ctmp;
194 greg 2.54 int i;
195 greg 2.1 /* easy shadow test */
196 greg 2.10 if (r->crtype & SHADOW)
197 greg 2.27 return(1);
198 greg 2.1
199     if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
200     objerror(m, USER, "bad number of real arguments");
201 greg 2.36 /* check for back side */
202     if (r->rod < 0.0) {
203 greg 2.56 if (!backvis) {
204 greg 2.36 raytrans(r);
205     return(1);
206     }
207     raytexture(r, m->omod);
208     flipsurface(r); /* reorient if backvis */
209     } else
210     raytexture(r, m->omod);
211     /* get material color */
212 greg 2.2 nd.mp = m;
213 greg 2.1 nd.rp = r;
214     setcolor(nd.mcolor, m->oargs.farg[0],
215     m->oargs.farg[1],
216     m->oargs.farg[2]);
217     /* get roughness */
218     nd.specfl = 0;
219 greg 2.18 nd.u_alpha = m->oargs.farg[4];
220     nd.v_alpha = m->oargs.farg[5];
221 greg 2.54 if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY))
222 greg 2.10 objerror(m, USER, "roughness too small");
223 greg 2.36
224 greg 2.1 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
225     if (nd.pdot < .001)
226     nd.pdot = .001; /* non-zero for diraniso() */
227     multcolor(nd.mcolor, r->pcol); /* modify material color */
228     /* get specular component */
229     if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
230     nd.specfl |= SP_REFL;
231     /* compute specular color */
232     if (m->otype == MAT_METAL2)
233     copycolor(nd.scolor, nd.mcolor);
234     else
235     setcolor(nd.scolor, 1.0, 1.0, 1.0);
236     scalecolor(nd.scolor, nd.rspec);
237 greg 2.4 /* check threshold */
238 greg 2.25 if (specthresh >= nd.rspec-FTINY)
239 greg 2.4 nd.specfl |= SP_RBLT;
240 greg 2.6 /* compute refl. direction */
241 greg 2.47 VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.0*nd.pdot);
242 greg 2.6 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
243 greg 2.47 VSUM(nd.vrefl, r->rdir, r->ron, 2.0*r->rod);
244 greg 2.1 }
245     /* compute transmission */
246 greg 2.16 if (m->otype == MAT_TRANS2) {
247 greg 2.1 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
248     nd.tspec = nd.trans * m->oargs.farg[7];
249     nd.tdiff = nd.trans - nd.tspec;
250     if (nd.tspec > FTINY) {
251     nd.specfl |= SP_TRAN;
252 greg 2.4 /* check threshold */
253 greg 2.25 if (specthresh >= nd.tspec-FTINY)
254 greg 2.4 nd.specfl |= SP_TBLT;
255 greg 2.10 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
256 greg 2.1 VCOPY(nd.prdir, r->rdir);
257     } else {
258     for (i = 0; i < 3; i++) /* perturb */
259 greg 2.17 nd.prdir[i] = r->rdir[i] - r->pert[i];
260 greg 2.6 if (DOT(nd.prdir, r->ron) < -FTINY)
261     normalize(nd.prdir); /* OK */
262     else
263     VCOPY(nd.prdir, r->rdir);
264 greg 2.1 }
265     }
266     } else
267     nd.tdiff = nd.tspec = nd.trans = 0.0;
268    
269     /* diffuse reflection */
270     nd.rdiff = 1.0 - nd.trans - nd.rspec;
271    
272 greg 2.39 if (r->ro != NULL && isflat(r->ro->otype))
273 greg 2.4 nd.specfl |= SP_FLAT;
274    
275 greg 2.55 getacoords(&nd); /* set up coordinates */
276 greg 2.1
277 greg 2.60 if (nd.specfl & (SP_REFL|SP_TRAN))
278 greg 2.55 agaussamp(&nd);
279 greg 2.1
280     if (nd.rdiff > FTINY) { /* ambient from this side */
281 greg 2.43 copycolor(ctmp, nd.mcolor); /* modified by material color */
282 greg 2.52 scalecolor(ctmp, nd.rdiff);
283     if (nd.specfl & SP_RBLT) /* add in specular as well? */
284     addcolor(ctmp, nd.scolor);
285 greg 2.43 multambient(ctmp, r, nd.pnorm);
286 greg 2.1 addcolor(r->rcol, ctmp); /* add to returned color */
287     }
288 greg 2.58
289 greg 2.1 if (nd.tdiff > FTINY) { /* ambient from other side */
290 greg 2.31 FVECT bnorm;
291    
292 greg 2.1 flipsurface(r);
293 greg 2.31 bnorm[0] = -nd.pnorm[0];
294     bnorm[1] = -nd.pnorm[1];
295     bnorm[2] = -nd.pnorm[2];
296 greg 2.43 copycolor(ctmp, nd.mcolor); /* modified by color */
297 greg 2.4 if (nd.specfl & SP_TBLT)
298     scalecolor(ctmp, nd.trans);
299     else
300     scalecolor(ctmp, nd.tdiff);
301 greg 2.43 multambient(ctmp, r, bnorm);
302 greg 2.1 addcolor(r->rcol, ctmp);
303     flipsurface(r);
304     }
305     /* add direct component */
306     direct(r, diraniso, &nd);
307 greg 2.27
308     return(1);
309 greg 2.1 }
310    
311 greg 2.34 static void
312 schorsch 2.41 getacoords( /* set up coordinate system */
313 greg 2.54 ANISODAT *np
314 schorsch 2.41 )
315 greg 2.1 {
316 greg 2.54 MFUNC *mf;
317     int i;
318 greg 2.1
319     mf = getfunc(np->mp, 3, 0x7, 1);
320 greg 2.55 setfunc(np->mp, np->rp);
321 greg 2.1 errno = 0;
322     for (i = 0; i < 3; i++)
323     np->u[i] = evalue(mf->ep[i]);
324 greg 2.57 if ((errno == EDOM) | (errno == ERANGE))
325     np->u[0] = np->u[1] = np->u[2] = 0.0;
326 greg 2.53 if (mf->fxp != &unitxf)
327     multv3(np->u, np->u, mf->fxp->xfm);
328 greg 2.1 fcross(np->v, np->pnorm, np->u);
329     if (normalize(np->v) == 0.0) {
330 greg 2.57 if (fabs(np->u_alpha - np->v_alpha) > 0.001)
331     objerror(np->mp, WARNING, "illegal orientation vector");
332 greg 2.59 getperpendicular(np->u, np->pnorm, 1); /* punting */
333 greg 2.57 fcross(np->v, np->pnorm, np->u);
334     np->u_alpha = np->v_alpha = sqrt( 0.5 *
335     (np->u_alpha*np->u_alpha + np->v_alpha*np->v_alpha) );
336     } else
337     fcross(np->u, np->v, np->pnorm);
338 greg 2.1 }
339    
340    
341 greg 2.34 static void
342 greg 2.46 agaussamp( /* sample anisotropic Gaussian specular */
343 greg 2.54 ANISODAT *np
344 schorsch 2.41 )
345 greg 2.1 {
346     RAY sr;
347     FVECT h;
348     double rv[2];
349     double d, sinp, cosp;
350 greg 2.47 COLOR scol;
351 greg 2.50 int maxiter, ntrials, nstarget, nstaken;
352 greg 2.54 int i;
353 greg 2.1 /* compute reflection */
354 greg 2.4 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
355 greg 2.55 rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) {
356 greg 2.50 nstarget = 1;
357 greg 2.47 if (specjitter > 1.5) { /* multiple samples? */
358 greg 2.55 nstarget = specjitter*np->rp->rweight + .5;
359 greg 2.50 if (sr.rweight <= minweight*nstarget)
360     nstarget = sr.rweight/minweight;
361     if (nstarget > 1) {
362     d = 1./nstarget;
363     scalecolor(sr.rcoef, d);
364 greg 2.48 sr.rweight *= d;
365 greg 2.47 } else
366 greg 2.50 nstarget = 1;
367 greg 2.47 }
368 greg 2.50 setcolor(scol, 0., 0., 0.);
369 greg 2.51 dimlist[ndims++] = (int)(size_t)np->mp;
370 greg 2.50 maxiter = MAXITER*nstarget;
371     for (nstaken = ntrials = 0; nstaken < nstarget &&
372     ntrials < maxiter; ntrials++) {
373     if (ntrials)
374 greg 2.32 d = frandom();
375     else
376     d = urand(ilhash(dimlist,ndims)+samplendx);
377     multisamp(rv, 2, d);
378     d = 2.0*PI * rv[0];
379 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
380     sinp = tsin(d) * np->v_alpha;
381 greg 2.47 d = 1./sqrt(cosp*cosp + sinp*sinp);
382     cosp *= d;
383     sinp *= d;
384     if ((0. <= specjitter) & (specjitter < 1.))
385     rv[1] = 1.0 - specjitter*rv[1];
386 greg 2.32 if (rv[1] <= FTINY)
387     d = 1.0;
388     else
389     d = sqrt(-log(rv[1]) /
390     (cosp*cosp/(np->u_alpha*np->u_alpha) +
391     sinp*sinp/(np->v_alpha*np->v_alpha)));
392     for (i = 0; i < 3; i++)
393     h[i] = np->pnorm[i] +
394     d*(cosp*np->u[i] + sinp*np->v[i]);
395 greg 2.55 d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
396     VSUM(sr.rdir, np->rp->rdir, h, d);
397 greg 2.50 /* sample rejection test */
398 greg 2.55 if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
399 greg 2.47 continue;
400     checknorm(sr.rdir);
401 greg 2.50 if (nstarget > 1) { /* W-G-M-D adjustment */
402     if (nstaken) rayclear(&sr);
403     rayvalue(&sr);
404 greg 2.55 d = 2./(1. + np->rp->rod/d);
405 greg 2.50 scalecolor(sr.rcol, d);
406     addcolor(scol, sr.rcol);
407     } else {
408     rayvalue(&sr);
409     multcolor(sr.rcol, sr.rcoef);
410 greg 2.55 addcolor(np->rp->rcol, sr.rcol);
411 greg 2.32 }
412 greg 2.50 ++nstaken;
413     }
414     if (nstarget > 1) { /* final W-G-M-D weighting */
415     multcolor(scol, sr.rcoef);
416     d = (double)nstarget/ntrials;
417     scalecolor(scol, d);
418 greg 2.55 addcolor(np->rp->rcol, scol);
419 greg 2.32 }
420 greg 2.1 ndims--;
421     }
422     /* compute transmission */
423 greg 2.43 copycolor(sr.rcoef, np->mcolor); /* modify by material color */
424     scalecolor(sr.rcoef, np->tspec);
425 greg 2.7 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
426 greg 2.55 rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) {
427 greg 2.50 nstarget = 1;
428 greg 2.47 if (specjitter > 1.5) { /* multiple samples? */
429 greg 2.55 nstarget = specjitter*np->rp->rweight + .5;
430 greg 2.50 if (sr.rweight <= minweight*nstarget)
431     nstarget = sr.rweight/minweight;
432     if (nstarget > 1) {
433     d = 1./nstarget;
434 greg 2.48 scalecolor(sr.rcoef, d);
435     sr.rweight *= d;
436 greg 2.47 } else
437 greg 2.50 nstarget = 1;
438 greg 2.47 }
439 greg 2.51 dimlist[ndims++] = (int)(size_t)np->mp;
440 greg 2.50 maxiter = MAXITER*nstarget;
441     for (nstaken = ntrials = 0; nstaken < nstarget &&
442     ntrials < maxiter; ntrials++) {
443     if (ntrials)
444 greg 2.32 d = frandom();
445     else
446     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
447     multisamp(rv, 2, d);
448     d = 2.0*PI * rv[0];
449 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
450     sinp = tsin(d) * np->v_alpha;
451 greg 2.47 d = 1./sqrt(cosp*cosp + sinp*sinp);
452     cosp *= d;
453     sinp *= d;
454     if ((0. <= specjitter) & (specjitter < 1.))
455     rv[1] = 1.0 - specjitter*rv[1];
456 greg 2.32 if (rv[1] <= FTINY)
457     d = 1.0;
458     else
459     d = sqrt(-log(rv[1]) /
460     (cosp*cosp/(np->u_alpha*np->u_alpha) +
461 gwlarson 2.33 sinp*sinp/(np->v_alpha*np->v_alpha)));
462 greg 2.32 for (i = 0; i < 3; i++)
463     sr.rdir[i] = np->prdir[i] +
464     d*(cosp*np->u[i] + sinp*np->v[i]);
465 greg 2.55 if (DOT(sr.rdir, np->rp->ron) >= -FTINY)
466 greg 2.47 continue;
467     normalize(sr.rdir); /* OK, normalize */
468 greg 2.50 if (nstaken) /* multi-sampling */
469 greg 2.47 rayclear(&sr);
470     rayvalue(&sr);
471     multcolor(sr.rcol, sr.rcoef);
472 greg 2.55 addcolor(np->rp->rcol, sr.rcol);
473 greg 2.50 ++nstaken;
474 greg 2.32 }
475 greg 2.7 ndims--;
476     }
477 greg 2.1 }