ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.60
Committed: Tue May 26 13:21:07 2015 UTC (8 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.59: +2 -10 lines
Log Message:
Removed deprecated ambRayInPmap() macro from code

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.60 static const char RCSid[] = "$Id: aniso.c,v 2.59 2015/05/21 05:54:54 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading functions for anisotropic materials.
6     */
7    
8 greg 2.35 #include "copyright.h"
9 greg 2.34
10 greg 2.1 #include "ray.h"
11 greg 2.40 #include "ambient.h"
12 greg 2.1 #include "otypes.h"
13 schorsch 2.41 #include "rtotypes.h"
14     #include "source.h"
15 greg 2.1 #include "func.h"
16     #include "random.h"
17    
18 greg 2.32 #ifndef MAXITER
19     #define MAXITER 10 /* maximum # specular ray attempts */
20     #endif
21    
22 greg 2.1 /*
23 greg 2.22 * This routine implements the anisotropic Gaussian
24 greg 2.54 * model described by Ward in Siggraph `92 article, updated with
25     * normalization and sampling adjustments due to Geisler-Moroder and Duer.
26 greg 2.1 * We orient the surface towards the incoming ray, so a single
27     * surface can be used to represent an infinitely thin object.
28     *
29     * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
30     * 4+ ux uy uz funcfile [transform...]
31     * 0
32 greg 2.54 * 6 red grn blu specular-frac. u-rough v-rough
33 greg 2.1 *
34     * Real arguments for MAT_TRANS2 are:
35     * 8 red grn blu rspec u-rough v-rough trans tspec
36     */
37    
38     /* specularity flags */
39     #define SP_REFL 01 /* has reflected specular component */
40     #define SP_TRAN 02 /* has transmitted specular */
41 greg 2.10 #define SP_FLAT 04 /* reflecting surface is flat */
42     #define SP_RBLT 010 /* reflection below sample threshold */
43     #define SP_TBLT 020 /* transmission below threshold */
44 greg 2.1
45     typedef struct {
46 greg 2.2 OBJREC *mp; /* material pointer */
47 greg 2.1 RAY *rp; /* ray pointer */
48     short specfl; /* specularity flags, defined above */
49     COLOR mcolor; /* color of this material */
50     COLOR scolor; /* color of specular component */
51 greg 2.6 FVECT vrefl; /* vector in reflected direction */
52 greg 2.1 FVECT prdir; /* vector in transmitted direction */
53     FVECT u, v; /* u and v vectors orienting anisotropy */
54 greg 2.18 double u_alpha; /* u roughness */
55     double v_alpha; /* v roughness */
56 greg 2.1 double rdiff, rspec; /* reflected specular, diffuse */
57     double trans; /* transmissivity */
58     double tdiff, tspec; /* transmitted specular, diffuse */
59     FVECT pnorm; /* perturbed surface normal */
60     double pdot; /* perturbed dot product */
61     } ANISODAT; /* anisotropic material data */
62    
63 greg 2.55 static void getacoords(ANISODAT *np);
64     static void agaussamp(ANISODAT *np);
65 greg 2.34
66 greg 2.1
67 greg 2.34 static void
68 schorsch 2.41 diraniso( /* compute source contribution */
69     COLOR cval, /* returned coefficient */
70 greg 2.54 void *nnp, /* material data */
71 schorsch 2.41 FVECT ldir, /* light source direction */
72     double omega /* light source size */
73     )
74 greg 2.1 {
75 greg 2.54 ANISODAT *np = nnp;
76 greg 2.1 double ldot;
77 greg 2.16 double dtmp, dtmp1, dtmp2;
78 greg 2.1 FVECT h;
79     double au2, av2;
80     COLOR ctmp;
81    
82     setcolor(cval, 0.0, 0.0, 0.0);
83    
84     ldot = DOT(np->pnorm, ldir);
85    
86     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
87     return; /* wrong side */
88    
89 greg 2.54 if ((ldot > FTINY) & (np->rdiff > FTINY)) {
90 greg 2.1 /*
91     * Compute and add diffuse reflected component to returned
92     * color. The diffuse reflected component will always be
93     * modified by the color of the material.
94     */
95     copycolor(ctmp, np->mcolor);
96 greg 2.42 dtmp = ldot * omega * np->rdiff * (1.0/PI);
97 greg 2.1 scalecolor(ctmp, dtmp);
98     addcolor(cval, ctmp);
99     }
100 greg 2.58
101     if ((ldot < -FTINY) & (np->tdiff > FTINY)) {
102     /*
103     * Compute diffuse transmission.
104     */
105     copycolor(ctmp, np->mcolor);
106     dtmp = -ldot * omega * np->tdiff * (1.0/PI);
107     scalecolor(ctmp, dtmp);
108     addcolor(cval, ctmp);
109     }
110    
111 greg 2.57 if (ldot > FTINY && np->specfl&SP_REFL) {
112 greg 2.1 /*
113     * Compute specular reflection coefficient using
114 greg 2.46 * anisotropic Gaussian distribution model.
115 greg 2.1 */
116 greg 2.2 /* add source width if flat */
117     if (np->specfl & SP_FLAT)
118 greg 2.42 au2 = av2 = omega * (0.25/PI);
119 greg 2.2 else
120     au2 = av2 = 0.0;
121 greg 2.18 au2 += np->u_alpha*np->u_alpha;
122     av2 += np->v_alpha*np->v_alpha;
123 greg 2.1 /* half vector */
124 greg 2.54 VSUB(h, ldir, np->rp->rdir);
125 greg 2.1 /* ellipse */
126 greg 2.16 dtmp1 = DOT(np->u, h);
127     dtmp1 *= dtmp1 / au2;
128 greg 2.1 dtmp2 = DOT(np->v, h);
129     dtmp2 *= dtmp2 / av2;
130 greg 2.46 /* new W-G-M-D model */
131 greg 2.23 dtmp = DOT(np->pnorm, h);
132 greg 2.46 dtmp *= dtmp;
133     dtmp1 = (dtmp1 + dtmp2) / dtmp;
134     dtmp = exp(-dtmp1) * DOT(h,h) /
135     (PI * dtmp*dtmp * sqrt(au2*av2));
136 greg 2.1 /* worth using? */
137     if (dtmp > FTINY) {
138     copycolor(ctmp, np->scolor);
139 greg 2.46 dtmp *= ldot * omega;
140 greg 2.1 scalecolor(ctmp, dtmp);
141     addcolor(cval, ctmp);
142     }
143     }
144 greg 2.58
145 greg 2.57 if (ldot < -FTINY && np->specfl&SP_TRAN) {
146 greg 2.1 /*
147     * Compute specular transmission. Specular transmission
148     * is always modified by material color.
149     */
150     /* roughness + source */
151 greg 2.42 au2 = av2 = omega * (1.0/PI);
152 greg 2.18 au2 += np->u_alpha*np->u_alpha;
153     av2 += np->v_alpha*np->v_alpha;
154 greg 2.16 /* "half vector" */
155 greg 2.54 VSUB(h, ldir, np->prdir);
156 greg 2.19 dtmp = DOT(h,h);
157 greg 2.16 if (dtmp > FTINY*FTINY) {
158 greg 2.19 dtmp1 = DOT(h,np->pnorm);
159     dtmp = 1.0 - dtmp1*dtmp1/dtmp;
160     if (dtmp > FTINY*FTINY) {
161     dtmp1 = DOT(h,np->u);
162 greg 2.23 dtmp1 *= dtmp1 / au2;
163 greg 2.19 dtmp2 = DOT(h,np->v);
164 greg 2.23 dtmp2 *= dtmp2 / av2;
165 greg 2.19 dtmp = (dtmp1 + dtmp2) / dtmp;
166     }
167 greg 2.16 } else
168     dtmp = 0.0;
169 greg 2.46 /* Gaussian */
170 greg 2.44 dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2));
171 greg 2.1 /* worth using? */
172     if (dtmp > FTINY) {
173     copycolor(ctmp, np->mcolor);
174 greg 2.16 dtmp *= np->tspec * omega;
175 greg 2.1 scalecolor(ctmp, dtmp);
176     addcolor(cval, ctmp);
177     }
178     }
179     }
180    
181    
182 greg 2.54 int
183 schorsch 2.41 m_aniso( /* shade ray that hit something anisotropic */
184 greg 2.54 OBJREC *m,
185     RAY *r
186 schorsch 2.41 )
187 greg 2.1 {
188     ANISODAT nd;
189     COLOR ctmp;
190 greg 2.54 int i;
191 greg 2.1 /* easy shadow test */
192 greg 2.10 if (r->crtype & SHADOW)
193 greg 2.27 return(1);
194 greg 2.1
195     if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
196     objerror(m, USER, "bad number of real arguments");
197 greg 2.36 /* check for back side */
198     if (r->rod < 0.0) {
199 greg 2.56 if (!backvis) {
200 greg 2.36 raytrans(r);
201     return(1);
202     }
203     raytexture(r, m->omod);
204     flipsurface(r); /* reorient if backvis */
205     } else
206     raytexture(r, m->omod);
207     /* get material color */
208 greg 2.2 nd.mp = m;
209 greg 2.1 nd.rp = r;
210     setcolor(nd.mcolor, m->oargs.farg[0],
211     m->oargs.farg[1],
212     m->oargs.farg[2]);
213     /* get roughness */
214     nd.specfl = 0;
215 greg 2.18 nd.u_alpha = m->oargs.farg[4];
216     nd.v_alpha = m->oargs.farg[5];
217 greg 2.54 if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY))
218 greg 2.10 objerror(m, USER, "roughness too small");
219 greg 2.36
220 greg 2.1 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
221     if (nd.pdot < .001)
222     nd.pdot = .001; /* non-zero for diraniso() */
223     multcolor(nd.mcolor, r->pcol); /* modify material color */
224     /* get specular component */
225     if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
226     nd.specfl |= SP_REFL;
227     /* compute specular color */
228     if (m->otype == MAT_METAL2)
229     copycolor(nd.scolor, nd.mcolor);
230     else
231     setcolor(nd.scolor, 1.0, 1.0, 1.0);
232     scalecolor(nd.scolor, nd.rspec);
233 greg 2.4 /* check threshold */
234 greg 2.25 if (specthresh >= nd.rspec-FTINY)
235 greg 2.4 nd.specfl |= SP_RBLT;
236 greg 2.6 /* compute refl. direction */
237 greg 2.47 VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.0*nd.pdot);
238 greg 2.6 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
239 greg 2.47 VSUM(nd.vrefl, r->rdir, r->ron, 2.0*r->rod);
240 greg 2.1 }
241     /* compute transmission */
242 greg 2.16 if (m->otype == MAT_TRANS2) {
243 greg 2.1 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
244     nd.tspec = nd.trans * m->oargs.farg[7];
245     nd.tdiff = nd.trans - nd.tspec;
246     if (nd.tspec > FTINY) {
247     nd.specfl |= SP_TRAN;
248 greg 2.4 /* check threshold */
249 greg 2.25 if (specthresh >= nd.tspec-FTINY)
250 greg 2.4 nd.specfl |= SP_TBLT;
251 greg 2.10 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
252 greg 2.1 VCOPY(nd.prdir, r->rdir);
253     } else {
254     for (i = 0; i < 3; i++) /* perturb */
255 greg 2.17 nd.prdir[i] = r->rdir[i] - r->pert[i];
256 greg 2.6 if (DOT(nd.prdir, r->ron) < -FTINY)
257     normalize(nd.prdir); /* OK */
258     else
259     VCOPY(nd.prdir, r->rdir);
260 greg 2.1 }
261     }
262     } else
263     nd.tdiff = nd.tspec = nd.trans = 0.0;
264    
265     /* diffuse reflection */
266     nd.rdiff = 1.0 - nd.trans - nd.rspec;
267    
268 greg 2.39 if (r->ro != NULL && isflat(r->ro->otype))
269 greg 2.4 nd.specfl |= SP_FLAT;
270    
271 greg 2.55 getacoords(&nd); /* set up coordinates */
272 greg 2.1
273 greg 2.60 if (nd.specfl & (SP_REFL|SP_TRAN))
274 greg 2.55 agaussamp(&nd);
275 greg 2.1
276     if (nd.rdiff > FTINY) { /* ambient from this side */
277 greg 2.43 copycolor(ctmp, nd.mcolor); /* modified by material color */
278 greg 2.52 scalecolor(ctmp, nd.rdiff);
279     if (nd.specfl & SP_RBLT) /* add in specular as well? */
280     addcolor(ctmp, nd.scolor);
281 greg 2.43 multambient(ctmp, r, nd.pnorm);
282 greg 2.1 addcolor(r->rcol, ctmp); /* add to returned color */
283     }
284 greg 2.58
285 greg 2.1 if (nd.tdiff > FTINY) { /* ambient from other side */
286 greg 2.31 FVECT bnorm;
287    
288 greg 2.1 flipsurface(r);
289 greg 2.31 bnorm[0] = -nd.pnorm[0];
290     bnorm[1] = -nd.pnorm[1];
291     bnorm[2] = -nd.pnorm[2];
292 greg 2.43 copycolor(ctmp, nd.mcolor); /* modified by color */
293 greg 2.4 if (nd.specfl & SP_TBLT)
294     scalecolor(ctmp, nd.trans);
295     else
296     scalecolor(ctmp, nd.tdiff);
297 greg 2.43 multambient(ctmp, r, bnorm);
298 greg 2.1 addcolor(r->rcol, ctmp);
299     flipsurface(r);
300     }
301     /* add direct component */
302     direct(r, diraniso, &nd);
303 greg 2.27
304     return(1);
305 greg 2.1 }
306    
307 greg 2.34 static void
308 schorsch 2.41 getacoords( /* set up coordinate system */
309 greg 2.54 ANISODAT *np
310 schorsch 2.41 )
311 greg 2.1 {
312 greg 2.54 MFUNC *mf;
313     int i;
314 greg 2.1
315     mf = getfunc(np->mp, 3, 0x7, 1);
316 greg 2.55 setfunc(np->mp, np->rp);
317 greg 2.1 errno = 0;
318     for (i = 0; i < 3; i++)
319     np->u[i] = evalue(mf->ep[i]);
320 greg 2.57 if ((errno == EDOM) | (errno == ERANGE))
321     np->u[0] = np->u[1] = np->u[2] = 0.0;
322 greg 2.53 if (mf->fxp != &unitxf)
323     multv3(np->u, np->u, mf->fxp->xfm);
324 greg 2.1 fcross(np->v, np->pnorm, np->u);
325     if (normalize(np->v) == 0.0) {
326 greg 2.57 if (fabs(np->u_alpha - np->v_alpha) > 0.001)
327     objerror(np->mp, WARNING, "illegal orientation vector");
328 greg 2.59 getperpendicular(np->u, np->pnorm, 1); /* punting */
329 greg 2.57 fcross(np->v, np->pnorm, np->u);
330     np->u_alpha = np->v_alpha = sqrt( 0.5 *
331     (np->u_alpha*np->u_alpha + np->v_alpha*np->v_alpha) );
332     } else
333     fcross(np->u, np->v, np->pnorm);
334 greg 2.1 }
335    
336    
337 greg 2.34 static void
338 greg 2.46 agaussamp( /* sample anisotropic Gaussian specular */
339 greg 2.54 ANISODAT *np
340 schorsch 2.41 )
341 greg 2.1 {
342     RAY sr;
343     FVECT h;
344     double rv[2];
345     double d, sinp, cosp;
346 greg 2.47 COLOR scol;
347 greg 2.50 int maxiter, ntrials, nstarget, nstaken;
348 greg 2.54 int i;
349 greg 2.1 /* compute reflection */
350 greg 2.4 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
351 greg 2.55 rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) {
352 greg 2.50 nstarget = 1;
353 greg 2.47 if (specjitter > 1.5) { /* multiple samples? */
354 greg 2.55 nstarget = specjitter*np->rp->rweight + .5;
355 greg 2.50 if (sr.rweight <= minweight*nstarget)
356     nstarget = sr.rweight/minweight;
357     if (nstarget > 1) {
358     d = 1./nstarget;
359     scalecolor(sr.rcoef, d);
360 greg 2.48 sr.rweight *= d;
361 greg 2.47 } else
362 greg 2.50 nstarget = 1;
363 greg 2.47 }
364 greg 2.50 setcolor(scol, 0., 0., 0.);
365 greg 2.51 dimlist[ndims++] = (int)(size_t)np->mp;
366 greg 2.50 maxiter = MAXITER*nstarget;
367     for (nstaken = ntrials = 0; nstaken < nstarget &&
368     ntrials < maxiter; ntrials++) {
369     if (ntrials)
370 greg 2.32 d = frandom();
371     else
372     d = urand(ilhash(dimlist,ndims)+samplendx);
373     multisamp(rv, 2, d);
374     d = 2.0*PI * rv[0];
375 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
376     sinp = tsin(d) * np->v_alpha;
377 greg 2.47 d = 1./sqrt(cosp*cosp + sinp*sinp);
378     cosp *= d;
379     sinp *= d;
380     if ((0. <= specjitter) & (specjitter < 1.))
381     rv[1] = 1.0 - specjitter*rv[1];
382 greg 2.32 if (rv[1] <= FTINY)
383     d = 1.0;
384     else
385     d = sqrt(-log(rv[1]) /
386     (cosp*cosp/(np->u_alpha*np->u_alpha) +
387     sinp*sinp/(np->v_alpha*np->v_alpha)));
388     for (i = 0; i < 3; i++)
389     h[i] = np->pnorm[i] +
390     d*(cosp*np->u[i] + sinp*np->v[i]);
391 greg 2.55 d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
392     VSUM(sr.rdir, np->rp->rdir, h, d);
393 greg 2.50 /* sample rejection test */
394 greg 2.55 if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
395 greg 2.47 continue;
396     checknorm(sr.rdir);
397 greg 2.50 if (nstarget > 1) { /* W-G-M-D adjustment */
398     if (nstaken) rayclear(&sr);
399     rayvalue(&sr);
400 greg 2.55 d = 2./(1. + np->rp->rod/d);
401 greg 2.50 scalecolor(sr.rcol, d);
402     addcolor(scol, sr.rcol);
403     } else {
404     rayvalue(&sr);
405     multcolor(sr.rcol, sr.rcoef);
406 greg 2.55 addcolor(np->rp->rcol, sr.rcol);
407 greg 2.32 }
408 greg 2.50 ++nstaken;
409     }
410     if (nstarget > 1) { /* final W-G-M-D weighting */
411     multcolor(scol, sr.rcoef);
412     d = (double)nstarget/ntrials;
413     scalecolor(scol, d);
414 greg 2.55 addcolor(np->rp->rcol, scol);
415 greg 2.32 }
416 greg 2.1 ndims--;
417     }
418     /* compute transmission */
419 greg 2.43 copycolor(sr.rcoef, np->mcolor); /* modify by material color */
420     scalecolor(sr.rcoef, np->tspec);
421 greg 2.7 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
422 greg 2.55 rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) {
423 greg 2.50 nstarget = 1;
424 greg 2.47 if (specjitter > 1.5) { /* multiple samples? */
425 greg 2.55 nstarget = specjitter*np->rp->rweight + .5;
426 greg 2.50 if (sr.rweight <= minweight*nstarget)
427     nstarget = sr.rweight/minweight;
428     if (nstarget > 1) {
429     d = 1./nstarget;
430 greg 2.48 scalecolor(sr.rcoef, d);
431     sr.rweight *= d;
432 greg 2.47 } else
433 greg 2.50 nstarget = 1;
434 greg 2.47 }
435 greg 2.51 dimlist[ndims++] = (int)(size_t)np->mp;
436 greg 2.50 maxiter = MAXITER*nstarget;
437     for (nstaken = ntrials = 0; nstaken < nstarget &&
438     ntrials < maxiter; ntrials++) {
439     if (ntrials)
440 greg 2.32 d = frandom();
441     else
442     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
443     multisamp(rv, 2, d);
444     d = 2.0*PI * rv[0];
445 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
446     sinp = tsin(d) * np->v_alpha;
447 greg 2.47 d = 1./sqrt(cosp*cosp + sinp*sinp);
448     cosp *= d;
449     sinp *= d;
450     if ((0. <= specjitter) & (specjitter < 1.))
451     rv[1] = 1.0 - specjitter*rv[1];
452 greg 2.32 if (rv[1] <= FTINY)
453     d = 1.0;
454     else
455     d = sqrt(-log(rv[1]) /
456     (cosp*cosp/(np->u_alpha*np->u_alpha) +
457 gwlarson 2.33 sinp*sinp/(np->v_alpha*np->v_alpha)));
458 greg 2.32 for (i = 0; i < 3; i++)
459     sr.rdir[i] = np->prdir[i] +
460     d*(cosp*np->u[i] + sinp*np->v[i]);
461 greg 2.55 if (DOT(sr.rdir, np->rp->ron) >= -FTINY)
462 greg 2.47 continue;
463     normalize(sr.rdir); /* OK, normalize */
464 greg 2.50 if (nstaken) /* multi-sampling */
465 greg 2.47 rayclear(&sr);
466     rayvalue(&sr);
467     multcolor(sr.rcol, sr.rcoef);
468 greg 2.55 addcolor(np->rp->rcol, sr.rcol);
469 greg 2.50 ++nstaken;
470 greg 2.32 }
471 greg 2.7 ndims--;
472     }
473 greg 2.1 }