ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.58
Committed: Tue Feb 24 19:39:26 2015 UTC (9 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.57: +23 -12 lines
Log Message:
Initial check-in of photon map addition by Roland Schregle

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.58 static const char RCSid[] = "$Id: aniso.c,v 2.57 2014/12/04 05:26:28 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading functions for anisotropic materials.
6     */
7    
8 greg 2.35 #include "copyright.h"
9 greg 2.34
10 greg 2.1 #include "ray.h"
11 greg 2.40 #include "ambient.h"
12 greg 2.1 #include "otypes.h"
13 schorsch 2.41 #include "rtotypes.h"
14     #include "source.h"
15 greg 2.1 #include "func.h"
16     #include "random.h"
17 greg 2.58 #include "pmapmat.h"
18 greg 2.1
19 greg 2.32 #ifndef MAXITER
20     #define MAXITER 10 /* maximum # specular ray attempts */
21     #endif
22    
23 greg 2.1 /*
24 greg 2.22 * This routine implements the anisotropic Gaussian
25 greg 2.54 * model described by Ward in Siggraph `92 article, updated with
26     * normalization and sampling adjustments due to Geisler-Moroder and Duer.
27 greg 2.1 * We orient the surface towards the incoming ray, so a single
28     * surface can be used to represent an infinitely thin object.
29     *
30     * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
31     * 4+ ux uy uz funcfile [transform...]
32     * 0
33 greg 2.54 * 6 red grn blu specular-frac. u-rough v-rough
34 greg 2.1 *
35     * Real arguments for MAT_TRANS2 are:
36     * 8 red grn blu rspec u-rough v-rough trans tspec
37     */
38    
39     /* specularity flags */
40     #define SP_REFL 01 /* has reflected specular component */
41     #define SP_TRAN 02 /* has transmitted specular */
42 greg 2.10 #define SP_FLAT 04 /* reflecting surface is flat */
43     #define SP_RBLT 010 /* reflection below sample threshold */
44     #define SP_TBLT 020 /* transmission below threshold */
45 greg 2.1
46     typedef struct {
47 greg 2.2 OBJREC *mp; /* material pointer */
48 greg 2.1 RAY *rp; /* ray pointer */
49     short specfl; /* specularity flags, defined above */
50     COLOR mcolor; /* color of this material */
51     COLOR scolor; /* color of specular component */
52 greg 2.6 FVECT vrefl; /* vector in reflected direction */
53 greg 2.1 FVECT prdir; /* vector in transmitted direction */
54     FVECT u, v; /* u and v vectors orienting anisotropy */
55 greg 2.18 double u_alpha; /* u roughness */
56     double v_alpha; /* v roughness */
57 greg 2.1 double rdiff, rspec; /* reflected specular, diffuse */
58     double trans; /* transmissivity */
59     double tdiff, tspec; /* transmitted specular, diffuse */
60     FVECT pnorm; /* perturbed surface normal */
61     double pdot; /* perturbed dot product */
62     } ANISODAT; /* anisotropic material data */
63    
64 greg 2.55 static void getacoords(ANISODAT *np);
65     static void agaussamp(ANISODAT *np);
66 greg 2.34
67 greg 2.1
68 greg 2.34 static void
69 schorsch 2.41 diraniso( /* compute source contribution */
70     COLOR cval, /* returned coefficient */
71 greg 2.54 void *nnp, /* material data */
72 schorsch 2.41 FVECT ldir, /* light source direction */
73     double omega /* light source size */
74     )
75 greg 2.1 {
76 greg 2.54 ANISODAT *np = nnp;
77 greg 2.1 double ldot;
78 greg 2.16 double dtmp, dtmp1, dtmp2;
79 greg 2.1 FVECT h;
80     double au2, av2;
81     COLOR ctmp;
82    
83     setcolor(cval, 0.0, 0.0, 0.0);
84    
85     ldot = DOT(np->pnorm, ldir);
86    
87     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
88     return; /* wrong side */
89    
90 greg 2.54 if ((ldot > FTINY) & (np->rdiff > FTINY)) {
91 greg 2.1 /*
92     * Compute and add diffuse reflected component to returned
93     * color. The diffuse reflected component will always be
94     * modified by the color of the material.
95     */
96     copycolor(ctmp, np->mcolor);
97 greg 2.42 dtmp = ldot * omega * np->rdiff * (1.0/PI);
98 greg 2.1 scalecolor(ctmp, dtmp);
99     addcolor(cval, ctmp);
100     }
101 greg 2.58
102     if ((ldot < -FTINY) & (np->tdiff > FTINY)) {
103     /*
104     * Compute diffuse transmission.
105     */
106     copycolor(ctmp, np->mcolor);
107     dtmp = -ldot * omega * np->tdiff * (1.0/PI);
108     scalecolor(ctmp, dtmp);
109     addcolor(cval, ctmp);
110     }
111    
112     /* PMAP: skip direct specular refl via ambient bounce if already
113     * accounted for in photon map */
114     if (ambRayInPmap(np->rp))
115     return;
116    
117 greg 2.57 if (ldot > FTINY && np->specfl&SP_REFL) {
118 greg 2.1 /*
119     * Compute specular reflection coefficient using
120 greg 2.46 * anisotropic Gaussian distribution model.
121 greg 2.1 */
122 greg 2.2 /* add source width if flat */
123     if (np->specfl & SP_FLAT)
124 greg 2.42 au2 = av2 = omega * (0.25/PI);
125 greg 2.2 else
126     au2 = av2 = 0.0;
127 greg 2.18 au2 += np->u_alpha*np->u_alpha;
128     av2 += np->v_alpha*np->v_alpha;
129 greg 2.1 /* half vector */
130 greg 2.54 VSUB(h, ldir, np->rp->rdir);
131 greg 2.1 /* ellipse */
132 greg 2.16 dtmp1 = DOT(np->u, h);
133     dtmp1 *= dtmp1 / au2;
134 greg 2.1 dtmp2 = DOT(np->v, h);
135     dtmp2 *= dtmp2 / av2;
136 greg 2.46 /* new W-G-M-D model */
137 greg 2.23 dtmp = DOT(np->pnorm, h);
138 greg 2.46 dtmp *= dtmp;
139     dtmp1 = (dtmp1 + dtmp2) / dtmp;
140     dtmp = exp(-dtmp1) * DOT(h,h) /
141     (PI * dtmp*dtmp * sqrt(au2*av2));
142 greg 2.1 /* worth using? */
143     if (dtmp > FTINY) {
144     copycolor(ctmp, np->scolor);
145 greg 2.46 dtmp *= ldot * omega;
146 greg 2.1 scalecolor(ctmp, dtmp);
147     addcolor(cval, ctmp);
148     }
149     }
150 greg 2.58
151 greg 2.57 if (ldot < -FTINY && np->specfl&SP_TRAN) {
152 greg 2.1 /*
153     * Compute specular transmission. Specular transmission
154     * is always modified by material color.
155     */
156     /* roughness + source */
157 greg 2.42 au2 = av2 = omega * (1.0/PI);
158 greg 2.18 au2 += np->u_alpha*np->u_alpha;
159     av2 += np->v_alpha*np->v_alpha;
160 greg 2.16 /* "half vector" */
161 greg 2.54 VSUB(h, ldir, np->prdir);
162 greg 2.19 dtmp = DOT(h,h);
163 greg 2.16 if (dtmp > FTINY*FTINY) {
164 greg 2.19 dtmp1 = DOT(h,np->pnorm);
165     dtmp = 1.0 - dtmp1*dtmp1/dtmp;
166     if (dtmp > FTINY*FTINY) {
167     dtmp1 = DOT(h,np->u);
168 greg 2.23 dtmp1 *= dtmp1 / au2;
169 greg 2.19 dtmp2 = DOT(h,np->v);
170 greg 2.23 dtmp2 *= dtmp2 / av2;
171 greg 2.19 dtmp = (dtmp1 + dtmp2) / dtmp;
172     }
173 greg 2.16 } else
174     dtmp = 0.0;
175 greg 2.46 /* Gaussian */
176 greg 2.44 dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2));
177 greg 2.1 /* worth using? */
178     if (dtmp > FTINY) {
179     copycolor(ctmp, np->mcolor);
180 greg 2.16 dtmp *= np->tspec * omega;
181 greg 2.1 scalecolor(ctmp, dtmp);
182     addcolor(cval, ctmp);
183     }
184     }
185     }
186    
187    
188 greg 2.54 int
189 schorsch 2.41 m_aniso( /* shade ray that hit something anisotropic */
190 greg 2.54 OBJREC *m,
191     RAY *r
192 schorsch 2.41 )
193 greg 2.1 {
194     ANISODAT nd;
195     COLOR ctmp;
196 greg 2.54 int i;
197 greg 2.1 /* easy shadow test */
198 greg 2.10 if (r->crtype & SHADOW)
199 greg 2.27 return(1);
200 greg 2.1
201     if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
202     objerror(m, USER, "bad number of real arguments");
203 greg 2.36 /* check for back side */
204     if (r->rod < 0.0) {
205 greg 2.56 if (!backvis) {
206 greg 2.36 raytrans(r);
207     return(1);
208     }
209     raytexture(r, m->omod);
210     flipsurface(r); /* reorient if backvis */
211     } else
212     raytexture(r, m->omod);
213     /* get material color */
214 greg 2.2 nd.mp = m;
215 greg 2.1 nd.rp = r;
216     setcolor(nd.mcolor, m->oargs.farg[0],
217     m->oargs.farg[1],
218     m->oargs.farg[2]);
219     /* get roughness */
220     nd.specfl = 0;
221 greg 2.18 nd.u_alpha = m->oargs.farg[4];
222     nd.v_alpha = m->oargs.farg[5];
223 greg 2.54 if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY))
224 greg 2.10 objerror(m, USER, "roughness too small");
225 greg 2.36
226 greg 2.1 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
227     if (nd.pdot < .001)
228     nd.pdot = .001; /* non-zero for diraniso() */
229     multcolor(nd.mcolor, r->pcol); /* modify material color */
230     /* get specular component */
231     if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
232     nd.specfl |= SP_REFL;
233     /* compute specular color */
234     if (m->otype == MAT_METAL2)
235     copycolor(nd.scolor, nd.mcolor);
236     else
237     setcolor(nd.scolor, 1.0, 1.0, 1.0);
238     scalecolor(nd.scolor, nd.rspec);
239 greg 2.4 /* check threshold */
240 greg 2.25 if (specthresh >= nd.rspec-FTINY)
241 greg 2.4 nd.specfl |= SP_RBLT;
242 greg 2.6 /* compute refl. direction */
243 greg 2.47 VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.0*nd.pdot);
244 greg 2.6 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
245 greg 2.47 VSUM(nd.vrefl, r->rdir, r->ron, 2.0*r->rod);
246 greg 2.1 }
247     /* compute transmission */
248 greg 2.16 if (m->otype == MAT_TRANS2) {
249 greg 2.1 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
250     nd.tspec = nd.trans * m->oargs.farg[7];
251     nd.tdiff = nd.trans - nd.tspec;
252     if (nd.tspec > FTINY) {
253     nd.specfl |= SP_TRAN;
254 greg 2.4 /* check threshold */
255 greg 2.25 if (specthresh >= nd.tspec-FTINY)
256 greg 2.4 nd.specfl |= SP_TBLT;
257 greg 2.10 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
258 greg 2.1 VCOPY(nd.prdir, r->rdir);
259     } else {
260     for (i = 0; i < 3; i++) /* perturb */
261 greg 2.17 nd.prdir[i] = r->rdir[i] - r->pert[i];
262 greg 2.6 if (DOT(nd.prdir, r->ron) < -FTINY)
263     normalize(nd.prdir); /* OK */
264     else
265     VCOPY(nd.prdir, r->rdir);
266 greg 2.1 }
267     }
268     } else
269     nd.tdiff = nd.tspec = nd.trans = 0.0;
270    
271     /* diffuse reflection */
272     nd.rdiff = 1.0 - nd.trans - nd.rspec;
273    
274 greg 2.39 if (r->ro != NULL && isflat(r->ro->otype))
275 greg 2.4 nd.specfl |= SP_FLAT;
276    
277 greg 2.55 getacoords(&nd); /* set up coordinates */
278 greg 2.1
279 greg 2.58 /* PMAP: skip indirect specular via ambient bounce if already accounted
280     * for in photon map */
281     if (!ambRayInPmap(r) && nd.specfl & (SP_REFL|SP_TRAN))
282 greg 2.55 agaussamp(&nd);
283 greg 2.1
284     if (nd.rdiff > FTINY) { /* ambient from this side */
285 greg 2.43 copycolor(ctmp, nd.mcolor); /* modified by material color */
286 greg 2.52 scalecolor(ctmp, nd.rdiff);
287     if (nd.specfl & SP_RBLT) /* add in specular as well? */
288     addcolor(ctmp, nd.scolor);
289 greg 2.43 multambient(ctmp, r, nd.pnorm);
290 greg 2.1 addcolor(r->rcol, ctmp); /* add to returned color */
291     }
292 greg 2.58
293 greg 2.1 if (nd.tdiff > FTINY) { /* ambient from other side */
294 greg 2.31 FVECT bnorm;
295    
296 greg 2.1 flipsurface(r);
297 greg 2.31 bnorm[0] = -nd.pnorm[0];
298     bnorm[1] = -nd.pnorm[1];
299     bnorm[2] = -nd.pnorm[2];
300 greg 2.43 copycolor(ctmp, nd.mcolor); /* modified by color */
301 greg 2.4 if (nd.specfl & SP_TBLT)
302     scalecolor(ctmp, nd.trans);
303     else
304     scalecolor(ctmp, nd.tdiff);
305 greg 2.43 multambient(ctmp, r, bnorm);
306 greg 2.1 addcolor(r->rcol, ctmp);
307     flipsurface(r);
308     }
309     /* add direct component */
310     direct(r, diraniso, &nd);
311 greg 2.27
312     return(1);
313 greg 2.1 }
314    
315 greg 2.34 static void
316 schorsch 2.41 getacoords( /* set up coordinate system */
317 greg 2.54 ANISODAT *np
318 schorsch 2.41 )
319 greg 2.1 {
320 greg 2.54 MFUNC *mf;
321     int i;
322 greg 2.1
323     mf = getfunc(np->mp, 3, 0x7, 1);
324 greg 2.55 setfunc(np->mp, np->rp);
325 greg 2.1 errno = 0;
326     for (i = 0; i < 3; i++)
327     np->u[i] = evalue(mf->ep[i]);
328 greg 2.57 if ((errno == EDOM) | (errno == ERANGE))
329     np->u[0] = np->u[1] = np->u[2] = 0.0;
330 greg 2.53 if (mf->fxp != &unitxf)
331     multv3(np->u, np->u, mf->fxp->xfm);
332 greg 2.1 fcross(np->v, np->pnorm, np->u);
333     if (normalize(np->v) == 0.0) {
334 greg 2.57 if (fabs(np->u_alpha - np->v_alpha) > 0.001)
335     objerror(np->mp, WARNING, "illegal orientation vector");
336     getperpendicular(np->u, np->pnorm); /* punting */
337     fcross(np->v, np->pnorm, np->u);
338     np->u_alpha = np->v_alpha = sqrt( 0.5 *
339     (np->u_alpha*np->u_alpha + np->v_alpha*np->v_alpha) );
340     } else
341     fcross(np->u, np->v, np->pnorm);
342 greg 2.1 }
343    
344    
345 greg 2.34 static void
346 greg 2.46 agaussamp( /* sample anisotropic Gaussian specular */
347 greg 2.54 ANISODAT *np
348 schorsch 2.41 )
349 greg 2.1 {
350     RAY sr;
351     FVECT h;
352     double rv[2];
353     double d, sinp, cosp;
354 greg 2.47 COLOR scol;
355 greg 2.50 int maxiter, ntrials, nstarget, nstaken;
356 greg 2.54 int i;
357 greg 2.1 /* compute reflection */
358 greg 2.4 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
359 greg 2.55 rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) {
360 greg 2.50 nstarget = 1;
361 greg 2.47 if (specjitter > 1.5) { /* multiple samples? */
362 greg 2.55 nstarget = specjitter*np->rp->rweight + .5;
363 greg 2.50 if (sr.rweight <= minweight*nstarget)
364     nstarget = sr.rweight/minweight;
365     if (nstarget > 1) {
366     d = 1./nstarget;
367     scalecolor(sr.rcoef, d);
368 greg 2.48 sr.rweight *= d;
369 greg 2.47 } else
370 greg 2.50 nstarget = 1;
371 greg 2.47 }
372 greg 2.50 setcolor(scol, 0., 0., 0.);
373 greg 2.51 dimlist[ndims++] = (int)(size_t)np->mp;
374 greg 2.50 maxiter = MAXITER*nstarget;
375     for (nstaken = ntrials = 0; nstaken < nstarget &&
376     ntrials < maxiter; ntrials++) {
377     if (ntrials)
378 greg 2.32 d = frandom();
379     else
380     d = urand(ilhash(dimlist,ndims)+samplendx);
381     multisamp(rv, 2, d);
382     d = 2.0*PI * rv[0];
383 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
384     sinp = tsin(d) * np->v_alpha;
385 greg 2.47 d = 1./sqrt(cosp*cosp + sinp*sinp);
386     cosp *= d;
387     sinp *= d;
388     if ((0. <= specjitter) & (specjitter < 1.))
389     rv[1] = 1.0 - specjitter*rv[1];
390 greg 2.32 if (rv[1] <= FTINY)
391     d = 1.0;
392     else
393     d = sqrt(-log(rv[1]) /
394     (cosp*cosp/(np->u_alpha*np->u_alpha) +
395     sinp*sinp/(np->v_alpha*np->v_alpha)));
396     for (i = 0; i < 3; i++)
397     h[i] = np->pnorm[i] +
398     d*(cosp*np->u[i] + sinp*np->v[i]);
399 greg 2.55 d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
400     VSUM(sr.rdir, np->rp->rdir, h, d);
401 greg 2.50 /* sample rejection test */
402 greg 2.55 if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
403 greg 2.47 continue;
404     checknorm(sr.rdir);
405 greg 2.50 if (nstarget > 1) { /* W-G-M-D adjustment */
406     if (nstaken) rayclear(&sr);
407     rayvalue(&sr);
408 greg 2.55 d = 2./(1. + np->rp->rod/d);
409 greg 2.50 scalecolor(sr.rcol, d);
410     addcolor(scol, sr.rcol);
411     } else {
412     rayvalue(&sr);
413     multcolor(sr.rcol, sr.rcoef);
414 greg 2.55 addcolor(np->rp->rcol, sr.rcol);
415 greg 2.32 }
416 greg 2.50 ++nstaken;
417     }
418     if (nstarget > 1) { /* final W-G-M-D weighting */
419     multcolor(scol, sr.rcoef);
420     d = (double)nstarget/ntrials;
421     scalecolor(scol, d);
422 greg 2.55 addcolor(np->rp->rcol, scol);
423 greg 2.32 }
424 greg 2.1 ndims--;
425     }
426     /* compute transmission */
427 greg 2.43 copycolor(sr.rcoef, np->mcolor); /* modify by material color */
428     scalecolor(sr.rcoef, np->tspec);
429 greg 2.7 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
430 greg 2.55 rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) {
431 greg 2.50 nstarget = 1;
432 greg 2.47 if (specjitter > 1.5) { /* multiple samples? */
433 greg 2.55 nstarget = specjitter*np->rp->rweight + .5;
434 greg 2.50 if (sr.rweight <= minweight*nstarget)
435     nstarget = sr.rweight/minweight;
436     if (nstarget > 1) {
437     d = 1./nstarget;
438 greg 2.48 scalecolor(sr.rcoef, d);
439     sr.rweight *= d;
440 greg 2.47 } else
441 greg 2.50 nstarget = 1;
442 greg 2.47 }
443 greg 2.51 dimlist[ndims++] = (int)(size_t)np->mp;
444 greg 2.50 maxiter = MAXITER*nstarget;
445     for (nstaken = ntrials = 0; nstaken < nstarget &&
446     ntrials < maxiter; ntrials++) {
447     if (ntrials)
448 greg 2.32 d = frandom();
449     else
450     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
451     multisamp(rv, 2, d);
452     d = 2.0*PI * rv[0];
453 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
454     sinp = tsin(d) * np->v_alpha;
455 greg 2.47 d = 1./sqrt(cosp*cosp + sinp*sinp);
456     cosp *= d;
457     sinp *= d;
458     if ((0. <= specjitter) & (specjitter < 1.))
459     rv[1] = 1.0 - specjitter*rv[1];
460 greg 2.32 if (rv[1] <= FTINY)
461     d = 1.0;
462     else
463     d = sqrt(-log(rv[1]) /
464     (cosp*cosp/(np->u_alpha*np->u_alpha) +
465 gwlarson 2.33 sinp*sinp/(np->v_alpha*np->v_alpha)));
466 greg 2.32 for (i = 0; i < 3; i++)
467     sr.rdir[i] = np->prdir[i] +
468     d*(cosp*np->u[i] + sinp*np->v[i]);
469 greg 2.55 if (DOT(sr.rdir, np->rp->ron) >= -FTINY)
470 greg 2.47 continue;
471     normalize(sr.rdir); /* OK, normalize */
472 greg 2.50 if (nstaken) /* multi-sampling */
473 greg 2.47 rayclear(&sr);
474     rayvalue(&sr);
475     multcolor(sr.rcol, sr.rcoef);
476 greg 2.55 addcolor(np->rp->rcol, sr.rcol);
477 greg 2.50 ++nstaken;
478 greg 2.32 }
479 greg 2.7 ndims--;
480     }
481 greg 2.1 }