ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.57
Committed: Thu Dec 4 05:26:28 2014 UTC (9 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.56: +14 -15 lines
Log Message:
Improved behavior of anisotropic reflections

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.57 static const char RCSid[] = "$Id: aniso.c,v 2.56 2014/01/25 18:27:39 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading functions for anisotropic materials.
6     */
7    
8 greg 2.35 #include "copyright.h"
9 greg 2.34
10 greg 2.1 #include "ray.h"
11 greg 2.40 #include "ambient.h"
12 greg 2.1 #include "otypes.h"
13 schorsch 2.41 #include "rtotypes.h"
14     #include "source.h"
15 greg 2.1 #include "func.h"
16     #include "random.h"
17    
18 greg 2.32 #ifndef MAXITER
19     #define MAXITER 10 /* maximum # specular ray attempts */
20     #endif
21    
22 greg 2.1 /*
23 greg 2.22 * This routine implements the anisotropic Gaussian
24 greg 2.54 * model described by Ward in Siggraph `92 article, updated with
25     * normalization and sampling adjustments due to Geisler-Moroder and Duer.
26 greg 2.1 * We orient the surface towards the incoming ray, so a single
27     * surface can be used to represent an infinitely thin object.
28     *
29     * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
30     * 4+ ux uy uz funcfile [transform...]
31     * 0
32 greg 2.54 * 6 red grn blu specular-frac. u-rough v-rough
33 greg 2.1 *
34     * Real arguments for MAT_TRANS2 are:
35     * 8 red grn blu rspec u-rough v-rough trans tspec
36     */
37    
38     /* specularity flags */
39     #define SP_REFL 01 /* has reflected specular component */
40     #define SP_TRAN 02 /* has transmitted specular */
41 greg 2.10 #define SP_FLAT 04 /* reflecting surface is flat */
42     #define SP_RBLT 010 /* reflection below sample threshold */
43     #define SP_TBLT 020 /* transmission below threshold */
44 greg 2.1
45     typedef struct {
46 greg 2.2 OBJREC *mp; /* material pointer */
47 greg 2.1 RAY *rp; /* ray pointer */
48     short specfl; /* specularity flags, defined above */
49     COLOR mcolor; /* color of this material */
50     COLOR scolor; /* color of specular component */
51 greg 2.6 FVECT vrefl; /* vector in reflected direction */
52 greg 2.1 FVECT prdir; /* vector in transmitted direction */
53     FVECT u, v; /* u and v vectors orienting anisotropy */
54 greg 2.18 double u_alpha; /* u roughness */
55     double v_alpha; /* v roughness */
56 greg 2.1 double rdiff, rspec; /* reflected specular, diffuse */
57     double trans; /* transmissivity */
58     double tdiff, tspec; /* transmitted specular, diffuse */
59     FVECT pnorm; /* perturbed surface normal */
60     double pdot; /* perturbed dot product */
61     } ANISODAT; /* anisotropic material data */
62    
63 greg 2.55 static void getacoords(ANISODAT *np);
64     static void agaussamp(ANISODAT *np);
65 greg 2.34
66 greg 2.1
67 greg 2.34 static void
68 schorsch 2.41 diraniso( /* compute source contribution */
69     COLOR cval, /* returned coefficient */
70 greg 2.54 void *nnp, /* material data */
71 schorsch 2.41 FVECT ldir, /* light source direction */
72     double omega /* light source size */
73     )
74 greg 2.1 {
75 greg 2.54 ANISODAT *np = nnp;
76 greg 2.1 double ldot;
77 greg 2.16 double dtmp, dtmp1, dtmp2;
78 greg 2.1 FVECT h;
79     double au2, av2;
80     COLOR ctmp;
81    
82     setcolor(cval, 0.0, 0.0, 0.0);
83    
84     ldot = DOT(np->pnorm, ldir);
85    
86     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
87     return; /* wrong side */
88    
89 greg 2.54 if ((ldot > FTINY) & (np->rdiff > FTINY)) {
90 greg 2.1 /*
91     * Compute and add diffuse reflected component to returned
92     * color. The diffuse reflected component will always be
93     * modified by the color of the material.
94     */
95     copycolor(ctmp, np->mcolor);
96 greg 2.42 dtmp = ldot * omega * np->rdiff * (1.0/PI);
97 greg 2.1 scalecolor(ctmp, dtmp);
98     addcolor(cval, ctmp);
99     }
100 greg 2.57 if (ldot > FTINY && np->specfl&SP_REFL) {
101 greg 2.1 /*
102     * Compute specular reflection coefficient using
103 greg 2.46 * anisotropic Gaussian distribution model.
104 greg 2.1 */
105 greg 2.2 /* add source width if flat */
106     if (np->specfl & SP_FLAT)
107 greg 2.42 au2 = av2 = omega * (0.25/PI);
108 greg 2.2 else
109     au2 = av2 = 0.0;
110 greg 2.18 au2 += np->u_alpha*np->u_alpha;
111     av2 += np->v_alpha*np->v_alpha;
112 greg 2.1 /* half vector */
113 greg 2.54 VSUB(h, ldir, np->rp->rdir);
114 greg 2.1 /* ellipse */
115 greg 2.16 dtmp1 = DOT(np->u, h);
116     dtmp1 *= dtmp1 / au2;
117 greg 2.1 dtmp2 = DOT(np->v, h);
118     dtmp2 *= dtmp2 / av2;
119 greg 2.46 /* new W-G-M-D model */
120 greg 2.23 dtmp = DOT(np->pnorm, h);
121 greg 2.46 dtmp *= dtmp;
122     dtmp1 = (dtmp1 + dtmp2) / dtmp;
123     dtmp = exp(-dtmp1) * DOT(h,h) /
124     (PI * dtmp*dtmp * sqrt(au2*av2));
125 greg 2.1 /* worth using? */
126     if (dtmp > FTINY) {
127     copycolor(ctmp, np->scolor);
128 greg 2.46 dtmp *= ldot * omega;
129 greg 2.1 scalecolor(ctmp, dtmp);
130     addcolor(cval, ctmp);
131     }
132     }
133 greg 2.54 if ((ldot < -FTINY) & (np->tdiff > FTINY)) {
134 greg 2.1 /*
135     * Compute diffuse transmission.
136     */
137     copycolor(ctmp, np->mcolor);
138 greg 2.42 dtmp = -ldot * omega * np->tdiff * (1.0/PI);
139 greg 2.1 scalecolor(ctmp, dtmp);
140     addcolor(cval, ctmp);
141     }
142 greg 2.57 if (ldot < -FTINY && np->specfl&SP_TRAN) {
143 greg 2.1 /*
144     * Compute specular transmission. Specular transmission
145     * is always modified by material color.
146     */
147     /* roughness + source */
148 greg 2.42 au2 = av2 = omega * (1.0/PI);
149 greg 2.18 au2 += np->u_alpha*np->u_alpha;
150     av2 += np->v_alpha*np->v_alpha;
151 greg 2.16 /* "half vector" */
152 greg 2.54 VSUB(h, ldir, np->prdir);
153 greg 2.19 dtmp = DOT(h,h);
154 greg 2.16 if (dtmp > FTINY*FTINY) {
155 greg 2.19 dtmp1 = DOT(h,np->pnorm);
156     dtmp = 1.0 - dtmp1*dtmp1/dtmp;
157     if (dtmp > FTINY*FTINY) {
158     dtmp1 = DOT(h,np->u);
159 greg 2.23 dtmp1 *= dtmp1 / au2;
160 greg 2.19 dtmp2 = DOT(h,np->v);
161 greg 2.23 dtmp2 *= dtmp2 / av2;
162 greg 2.19 dtmp = (dtmp1 + dtmp2) / dtmp;
163     }
164 greg 2.16 } else
165     dtmp = 0.0;
166 greg 2.46 /* Gaussian */
167 greg 2.44 dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2));
168 greg 2.1 /* worth using? */
169     if (dtmp > FTINY) {
170     copycolor(ctmp, np->mcolor);
171 greg 2.16 dtmp *= np->tspec * omega;
172 greg 2.1 scalecolor(ctmp, dtmp);
173     addcolor(cval, ctmp);
174     }
175     }
176     }
177    
178    
179 greg 2.54 int
180 schorsch 2.41 m_aniso( /* shade ray that hit something anisotropic */
181 greg 2.54 OBJREC *m,
182     RAY *r
183 schorsch 2.41 )
184 greg 2.1 {
185     ANISODAT nd;
186     COLOR ctmp;
187 greg 2.54 int i;
188 greg 2.1 /* easy shadow test */
189 greg 2.10 if (r->crtype & SHADOW)
190 greg 2.27 return(1);
191 greg 2.1
192     if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
193     objerror(m, USER, "bad number of real arguments");
194 greg 2.36 /* check for back side */
195     if (r->rod < 0.0) {
196 greg 2.56 if (!backvis) {
197 greg 2.36 raytrans(r);
198     return(1);
199     }
200     raytexture(r, m->omod);
201     flipsurface(r); /* reorient if backvis */
202     } else
203     raytexture(r, m->omod);
204     /* get material color */
205 greg 2.2 nd.mp = m;
206 greg 2.1 nd.rp = r;
207     setcolor(nd.mcolor, m->oargs.farg[0],
208     m->oargs.farg[1],
209     m->oargs.farg[2]);
210     /* get roughness */
211     nd.specfl = 0;
212 greg 2.18 nd.u_alpha = m->oargs.farg[4];
213     nd.v_alpha = m->oargs.farg[5];
214 greg 2.54 if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY))
215 greg 2.10 objerror(m, USER, "roughness too small");
216 greg 2.36
217 greg 2.1 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
218     if (nd.pdot < .001)
219     nd.pdot = .001; /* non-zero for diraniso() */
220     multcolor(nd.mcolor, r->pcol); /* modify material color */
221     /* get specular component */
222     if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
223     nd.specfl |= SP_REFL;
224     /* compute specular color */
225     if (m->otype == MAT_METAL2)
226     copycolor(nd.scolor, nd.mcolor);
227     else
228     setcolor(nd.scolor, 1.0, 1.0, 1.0);
229     scalecolor(nd.scolor, nd.rspec);
230 greg 2.4 /* check threshold */
231 greg 2.25 if (specthresh >= nd.rspec-FTINY)
232 greg 2.4 nd.specfl |= SP_RBLT;
233 greg 2.6 /* compute refl. direction */
234 greg 2.47 VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.0*nd.pdot);
235 greg 2.6 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
236 greg 2.47 VSUM(nd.vrefl, r->rdir, r->ron, 2.0*r->rod);
237 greg 2.1 }
238     /* compute transmission */
239 greg 2.16 if (m->otype == MAT_TRANS2) {
240 greg 2.1 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
241     nd.tspec = nd.trans * m->oargs.farg[7];
242     nd.tdiff = nd.trans - nd.tspec;
243     if (nd.tspec > FTINY) {
244     nd.specfl |= SP_TRAN;
245 greg 2.4 /* check threshold */
246 greg 2.25 if (specthresh >= nd.tspec-FTINY)
247 greg 2.4 nd.specfl |= SP_TBLT;
248 greg 2.10 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
249 greg 2.1 VCOPY(nd.prdir, r->rdir);
250     } else {
251     for (i = 0; i < 3; i++) /* perturb */
252 greg 2.17 nd.prdir[i] = r->rdir[i] - r->pert[i];
253 greg 2.6 if (DOT(nd.prdir, r->ron) < -FTINY)
254     normalize(nd.prdir); /* OK */
255     else
256     VCOPY(nd.prdir, r->rdir);
257 greg 2.1 }
258     }
259     } else
260     nd.tdiff = nd.tspec = nd.trans = 0.0;
261    
262     /* diffuse reflection */
263     nd.rdiff = 1.0 - nd.trans - nd.rspec;
264    
265 greg 2.39 if (r->ro != NULL && isflat(r->ro->otype))
266 greg 2.4 nd.specfl |= SP_FLAT;
267    
268 greg 2.55 getacoords(&nd); /* set up coordinates */
269 greg 2.1
270 greg 2.57 if (nd.specfl & (SP_REFL|SP_TRAN))
271 greg 2.55 agaussamp(&nd);
272 greg 2.1
273     if (nd.rdiff > FTINY) { /* ambient from this side */
274 greg 2.43 copycolor(ctmp, nd.mcolor); /* modified by material color */
275 greg 2.52 scalecolor(ctmp, nd.rdiff);
276     if (nd.specfl & SP_RBLT) /* add in specular as well? */
277     addcolor(ctmp, nd.scolor);
278 greg 2.43 multambient(ctmp, r, nd.pnorm);
279 greg 2.1 addcolor(r->rcol, ctmp); /* add to returned color */
280     }
281     if (nd.tdiff > FTINY) { /* ambient from other side */
282 greg 2.31 FVECT bnorm;
283    
284 greg 2.1 flipsurface(r);
285 greg 2.31 bnorm[0] = -nd.pnorm[0];
286     bnorm[1] = -nd.pnorm[1];
287     bnorm[2] = -nd.pnorm[2];
288 greg 2.43 copycolor(ctmp, nd.mcolor); /* modified by color */
289 greg 2.4 if (nd.specfl & SP_TBLT)
290     scalecolor(ctmp, nd.trans);
291     else
292     scalecolor(ctmp, nd.tdiff);
293 greg 2.43 multambient(ctmp, r, bnorm);
294 greg 2.1 addcolor(r->rcol, ctmp);
295     flipsurface(r);
296     }
297     /* add direct component */
298     direct(r, diraniso, &nd);
299 greg 2.27
300     return(1);
301 greg 2.1 }
302    
303    
304 greg 2.34 static void
305 schorsch 2.41 getacoords( /* set up coordinate system */
306 greg 2.54 ANISODAT *np
307 schorsch 2.41 )
308 greg 2.1 {
309 greg 2.54 MFUNC *mf;
310     int i;
311 greg 2.1
312     mf = getfunc(np->mp, 3, 0x7, 1);
313 greg 2.55 setfunc(np->mp, np->rp);
314 greg 2.1 errno = 0;
315     for (i = 0; i < 3; i++)
316     np->u[i] = evalue(mf->ep[i]);
317 greg 2.57 if ((errno == EDOM) | (errno == ERANGE))
318     np->u[0] = np->u[1] = np->u[2] = 0.0;
319 greg 2.53 if (mf->fxp != &unitxf)
320     multv3(np->u, np->u, mf->fxp->xfm);
321 greg 2.1 fcross(np->v, np->pnorm, np->u);
322     if (normalize(np->v) == 0.0) {
323 greg 2.57 if (fabs(np->u_alpha - np->v_alpha) > 0.001)
324     objerror(np->mp, WARNING, "illegal orientation vector");
325     getperpendicular(np->u, np->pnorm); /* punting */
326     fcross(np->v, np->pnorm, np->u);
327     np->u_alpha = np->v_alpha = sqrt( 0.5 *
328     (np->u_alpha*np->u_alpha + np->v_alpha*np->v_alpha) );
329     } else
330     fcross(np->u, np->v, np->pnorm);
331 greg 2.1 }
332    
333    
334 greg 2.34 static void
335 greg 2.46 agaussamp( /* sample anisotropic Gaussian specular */
336 greg 2.54 ANISODAT *np
337 schorsch 2.41 )
338 greg 2.1 {
339     RAY sr;
340     FVECT h;
341     double rv[2];
342     double d, sinp, cosp;
343 greg 2.47 COLOR scol;
344 greg 2.50 int maxiter, ntrials, nstarget, nstaken;
345 greg 2.54 int i;
346 greg 2.1 /* compute reflection */
347 greg 2.4 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
348 greg 2.55 rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) {
349 greg 2.50 nstarget = 1;
350 greg 2.47 if (specjitter > 1.5) { /* multiple samples? */
351 greg 2.55 nstarget = specjitter*np->rp->rweight + .5;
352 greg 2.50 if (sr.rweight <= minweight*nstarget)
353     nstarget = sr.rweight/minweight;
354     if (nstarget > 1) {
355     d = 1./nstarget;
356     scalecolor(sr.rcoef, d);
357 greg 2.48 sr.rweight *= d;
358 greg 2.47 } else
359 greg 2.50 nstarget = 1;
360 greg 2.47 }
361 greg 2.50 setcolor(scol, 0., 0., 0.);
362 greg 2.51 dimlist[ndims++] = (int)(size_t)np->mp;
363 greg 2.50 maxiter = MAXITER*nstarget;
364     for (nstaken = ntrials = 0; nstaken < nstarget &&
365     ntrials < maxiter; ntrials++) {
366     if (ntrials)
367 greg 2.32 d = frandom();
368     else
369     d = urand(ilhash(dimlist,ndims)+samplendx);
370     multisamp(rv, 2, d);
371     d = 2.0*PI * rv[0];
372 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
373     sinp = tsin(d) * np->v_alpha;
374 greg 2.47 d = 1./sqrt(cosp*cosp + sinp*sinp);
375     cosp *= d;
376     sinp *= d;
377     if ((0. <= specjitter) & (specjitter < 1.))
378     rv[1] = 1.0 - specjitter*rv[1];
379 greg 2.32 if (rv[1] <= FTINY)
380     d = 1.0;
381     else
382     d = sqrt(-log(rv[1]) /
383     (cosp*cosp/(np->u_alpha*np->u_alpha) +
384     sinp*sinp/(np->v_alpha*np->v_alpha)));
385     for (i = 0; i < 3; i++)
386     h[i] = np->pnorm[i] +
387     d*(cosp*np->u[i] + sinp*np->v[i]);
388 greg 2.55 d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
389     VSUM(sr.rdir, np->rp->rdir, h, d);
390 greg 2.50 /* sample rejection test */
391 greg 2.55 if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
392 greg 2.47 continue;
393     checknorm(sr.rdir);
394 greg 2.50 if (nstarget > 1) { /* W-G-M-D adjustment */
395     if (nstaken) rayclear(&sr);
396     rayvalue(&sr);
397 greg 2.55 d = 2./(1. + np->rp->rod/d);
398 greg 2.50 scalecolor(sr.rcol, d);
399     addcolor(scol, sr.rcol);
400     } else {
401     rayvalue(&sr);
402     multcolor(sr.rcol, sr.rcoef);
403 greg 2.55 addcolor(np->rp->rcol, sr.rcol);
404 greg 2.32 }
405 greg 2.50 ++nstaken;
406     }
407     if (nstarget > 1) { /* final W-G-M-D weighting */
408     multcolor(scol, sr.rcoef);
409     d = (double)nstarget/ntrials;
410     scalecolor(scol, d);
411 greg 2.55 addcolor(np->rp->rcol, scol);
412 greg 2.32 }
413 greg 2.1 ndims--;
414     }
415     /* compute transmission */
416 greg 2.43 copycolor(sr.rcoef, np->mcolor); /* modify by material color */
417     scalecolor(sr.rcoef, np->tspec);
418 greg 2.7 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
419 greg 2.55 rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) {
420 greg 2.50 nstarget = 1;
421 greg 2.47 if (specjitter > 1.5) { /* multiple samples? */
422 greg 2.55 nstarget = specjitter*np->rp->rweight + .5;
423 greg 2.50 if (sr.rweight <= minweight*nstarget)
424     nstarget = sr.rweight/minweight;
425     if (nstarget > 1) {
426     d = 1./nstarget;
427 greg 2.48 scalecolor(sr.rcoef, d);
428     sr.rweight *= d;
429 greg 2.47 } else
430 greg 2.50 nstarget = 1;
431 greg 2.47 }
432 greg 2.51 dimlist[ndims++] = (int)(size_t)np->mp;
433 greg 2.50 maxiter = MAXITER*nstarget;
434     for (nstaken = ntrials = 0; nstaken < nstarget &&
435     ntrials < maxiter; ntrials++) {
436     if (ntrials)
437 greg 2.32 d = frandom();
438     else
439     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
440     multisamp(rv, 2, d);
441     d = 2.0*PI * rv[0];
442 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
443     sinp = tsin(d) * np->v_alpha;
444 greg 2.47 d = 1./sqrt(cosp*cosp + sinp*sinp);
445     cosp *= d;
446     sinp *= d;
447     if ((0. <= specjitter) & (specjitter < 1.))
448     rv[1] = 1.0 - specjitter*rv[1];
449 greg 2.32 if (rv[1] <= FTINY)
450     d = 1.0;
451     else
452     d = sqrt(-log(rv[1]) /
453     (cosp*cosp/(np->u_alpha*np->u_alpha) +
454 gwlarson 2.33 sinp*sinp/(np->v_alpha*np->v_alpha)));
455 greg 2.32 for (i = 0; i < 3; i++)
456     sr.rdir[i] = np->prdir[i] +
457     d*(cosp*np->u[i] + sinp*np->v[i]);
458 greg 2.55 if (DOT(sr.rdir, np->rp->ron) >= -FTINY)
459 greg 2.47 continue;
460     normalize(sr.rdir); /* OK, normalize */
461 greg 2.50 if (nstaken) /* multi-sampling */
462 greg 2.47 rayclear(&sr);
463     rayvalue(&sr);
464     multcolor(sr.rcol, sr.rcoef);
465 greg 2.55 addcolor(np->rp->rcol, sr.rcol);
466 greg 2.50 ++nstaken;
467 greg 2.32 }
468 greg 2.7 ndims--;
469     }
470 greg 2.1 }