ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.54
Committed: Sun Jul 29 19:01:39 2012 UTC (11 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.53: +21 -25 lines
Log Message:
Added ashik2 type for anisotropic Ashikhmin-Shirley BRDF model

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.54 static const char RCSid[] = "$Id: aniso.c,v 2.53 2012/06/09 07:16:47 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading functions for anisotropic materials.
6     */
7    
8 greg 2.35 #include "copyright.h"
9 greg 2.34
10 greg 2.1 #include "ray.h"
11 greg 2.40 #include "ambient.h"
12 greg 2.1 #include "otypes.h"
13 schorsch 2.41 #include "rtotypes.h"
14     #include "source.h"
15 greg 2.1 #include "func.h"
16     #include "random.h"
17    
18 greg 2.32 #ifndef MAXITER
19     #define MAXITER 10 /* maximum # specular ray attempts */
20     #endif
21    
22 greg 2.1 /*
23 greg 2.22 * This routine implements the anisotropic Gaussian
24 greg 2.54 * model described by Ward in Siggraph `92 article, updated with
25     * normalization and sampling adjustments due to Geisler-Moroder and Duer.
26 greg 2.1 * We orient the surface towards the incoming ray, so a single
27     * surface can be used to represent an infinitely thin object.
28     *
29     * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
30     * 4+ ux uy uz funcfile [transform...]
31     * 0
32 greg 2.54 * 6 red grn blu specular-frac. u-rough v-rough
33 greg 2.1 *
34     * Real arguments for MAT_TRANS2 are:
35     * 8 red grn blu rspec u-rough v-rough trans tspec
36     */
37    
38     /* specularity flags */
39     #define SP_REFL 01 /* has reflected specular component */
40     #define SP_TRAN 02 /* has transmitted specular */
41 greg 2.10 #define SP_FLAT 04 /* reflecting surface is flat */
42     #define SP_RBLT 010 /* reflection below sample threshold */
43     #define SP_TBLT 020 /* transmission below threshold */
44     #define SP_BADU 040 /* bad u direction calculation */
45 greg 2.1
46     typedef struct {
47 greg 2.2 OBJREC *mp; /* material pointer */
48 greg 2.1 RAY *rp; /* ray pointer */
49     short specfl; /* specularity flags, defined above */
50     COLOR mcolor; /* color of this material */
51     COLOR scolor; /* color of specular component */
52 greg 2.6 FVECT vrefl; /* vector in reflected direction */
53 greg 2.1 FVECT prdir; /* vector in transmitted direction */
54     FVECT u, v; /* u and v vectors orienting anisotropy */
55 greg 2.18 double u_alpha; /* u roughness */
56     double v_alpha; /* v roughness */
57 greg 2.1 double rdiff, rspec; /* reflected specular, diffuse */
58     double trans; /* transmissivity */
59     double tdiff, tspec; /* transmitted specular, diffuse */
60     FVECT pnorm; /* perturbed surface normal */
61     double pdot; /* perturbed dot product */
62     } ANISODAT; /* anisotropic material data */
63    
64 schorsch 2.41 static void getacoords(RAY *r, ANISODAT *np);
65     static void agaussamp(RAY *r, ANISODAT *np);
66 greg 2.34
67 greg 2.1
68 greg 2.34 static void
69 schorsch 2.41 diraniso( /* compute source contribution */
70     COLOR cval, /* returned coefficient */
71 greg 2.54 void *nnp, /* material data */
72 schorsch 2.41 FVECT ldir, /* light source direction */
73     double omega /* light source size */
74     )
75 greg 2.1 {
76 greg 2.54 ANISODAT *np = nnp;
77 greg 2.1 double ldot;
78 greg 2.16 double dtmp, dtmp1, dtmp2;
79 greg 2.1 FVECT h;
80     double au2, av2;
81     COLOR ctmp;
82    
83     setcolor(cval, 0.0, 0.0, 0.0);
84    
85     ldot = DOT(np->pnorm, ldir);
86    
87     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
88     return; /* wrong side */
89    
90 greg 2.54 if ((ldot > FTINY) & (np->rdiff > FTINY)) {
91 greg 2.1 /*
92     * Compute and add diffuse reflected component to returned
93     * color. The diffuse reflected component will always be
94     * modified by the color of the material.
95     */
96     copycolor(ctmp, np->mcolor);
97 greg 2.42 dtmp = ldot * omega * np->rdiff * (1.0/PI);
98 greg 2.1 scalecolor(ctmp, dtmp);
99     addcolor(cval, ctmp);
100     }
101 greg 2.10 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
102 greg 2.1 /*
103     * Compute specular reflection coefficient using
104 greg 2.46 * anisotropic Gaussian distribution model.
105 greg 2.1 */
106 greg 2.2 /* add source width if flat */
107     if (np->specfl & SP_FLAT)
108 greg 2.42 au2 = av2 = omega * (0.25/PI);
109 greg 2.2 else
110     au2 = av2 = 0.0;
111 greg 2.18 au2 += np->u_alpha*np->u_alpha;
112     av2 += np->v_alpha*np->v_alpha;
113 greg 2.1 /* half vector */
114 greg 2.54 VSUB(h, ldir, np->rp->rdir);
115 greg 2.1 /* ellipse */
116 greg 2.16 dtmp1 = DOT(np->u, h);
117     dtmp1 *= dtmp1 / au2;
118 greg 2.1 dtmp2 = DOT(np->v, h);
119     dtmp2 *= dtmp2 / av2;
120 greg 2.46 /* new W-G-M-D model */
121 greg 2.23 dtmp = DOT(np->pnorm, h);
122 greg 2.46 dtmp *= dtmp;
123     dtmp1 = (dtmp1 + dtmp2) / dtmp;
124     dtmp = exp(-dtmp1) * DOT(h,h) /
125     (PI * dtmp*dtmp * sqrt(au2*av2));
126 greg 2.1 /* worth using? */
127     if (dtmp > FTINY) {
128     copycolor(ctmp, np->scolor);
129 greg 2.46 dtmp *= ldot * omega;
130 greg 2.1 scalecolor(ctmp, dtmp);
131     addcolor(cval, ctmp);
132     }
133     }
134 greg 2.54 if ((ldot < -FTINY) & (np->tdiff > FTINY)) {
135 greg 2.1 /*
136     * Compute diffuse transmission.
137     */
138     copycolor(ctmp, np->mcolor);
139 greg 2.42 dtmp = -ldot * omega * np->tdiff * (1.0/PI);
140 greg 2.1 scalecolor(ctmp, dtmp);
141     addcolor(cval, ctmp);
142     }
143 greg 2.10 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
144 greg 2.1 /*
145     * Compute specular transmission. Specular transmission
146     * is always modified by material color.
147     */
148     /* roughness + source */
149 greg 2.42 au2 = av2 = omega * (1.0/PI);
150 greg 2.18 au2 += np->u_alpha*np->u_alpha;
151     av2 += np->v_alpha*np->v_alpha;
152 greg 2.16 /* "half vector" */
153 greg 2.54 VSUB(h, ldir, np->prdir);
154 greg 2.19 dtmp = DOT(h,h);
155 greg 2.16 if (dtmp > FTINY*FTINY) {
156 greg 2.19 dtmp1 = DOT(h,np->pnorm);
157     dtmp = 1.0 - dtmp1*dtmp1/dtmp;
158     if (dtmp > FTINY*FTINY) {
159     dtmp1 = DOT(h,np->u);
160 greg 2.23 dtmp1 *= dtmp1 / au2;
161 greg 2.19 dtmp2 = DOT(h,np->v);
162 greg 2.23 dtmp2 *= dtmp2 / av2;
163 greg 2.19 dtmp = (dtmp1 + dtmp2) / dtmp;
164     }
165 greg 2.16 } else
166     dtmp = 0.0;
167 greg 2.46 /* Gaussian */
168 greg 2.44 dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2));
169 greg 2.1 /* worth using? */
170     if (dtmp > FTINY) {
171     copycolor(ctmp, np->mcolor);
172 greg 2.16 dtmp *= np->tspec * omega;
173 greg 2.1 scalecolor(ctmp, dtmp);
174     addcolor(cval, ctmp);
175     }
176     }
177     }
178    
179    
180 greg 2.54 int
181 schorsch 2.41 m_aniso( /* shade ray that hit something anisotropic */
182 greg 2.54 OBJREC *m,
183     RAY *r
184 schorsch 2.41 )
185 greg 2.1 {
186     ANISODAT nd;
187     COLOR ctmp;
188 greg 2.54 int i;
189 greg 2.1 /* easy shadow test */
190 greg 2.10 if (r->crtype & SHADOW)
191 greg 2.27 return(1);
192 greg 2.1
193     if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
194     objerror(m, USER, "bad number of real arguments");
195 greg 2.36 /* check for back side */
196     if (r->rod < 0.0) {
197     if (!backvis && m->otype != MAT_TRANS2) {
198     raytrans(r);
199     return(1);
200     }
201     raytexture(r, m->omod);
202     flipsurface(r); /* reorient if backvis */
203     } else
204     raytexture(r, m->omod);
205     /* get material color */
206 greg 2.2 nd.mp = m;
207 greg 2.1 nd.rp = r;
208     setcolor(nd.mcolor, m->oargs.farg[0],
209     m->oargs.farg[1],
210     m->oargs.farg[2]);
211     /* get roughness */
212     nd.specfl = 0;
213 greg 2.18 nd.u_alpha = m->oargs.farg[4];
214     nd.v_alpha = m->oargs.farg[5];
215 greg 2.54 if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY))
216 greg 2.10 objerror(m, USER, "roughness too small");
217 greg 2.36
218 greg 2.1 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
219     if (nd.pdot < .001)
220     nd.pdot = .001; /* non-zero for diraniso() */
221     multcolor(nd.mcolor, r->pcol); /* modify material color */
222     /* get specular component */
223     if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
224     nd.specfl |= SP_REFL;
225     /* compute specular color */
226     if (m->otype == MAT_METAL2)
227     copycolor(nd.scolor, nd.mcolor);
228     else
229     setcolor(nd.scolor, 1.0, 1.0, 1.0);
230     scalecolor(nd.scolor, nd.rspec);
231 greg 2.4 /* check threshold */
232 greg 2.25 if (specthresh >= nd.rspec-FTINY)
233 greg 2.4 nd.specfl |= SP_RBLT;
234 greg 2.6 /* compute refl. direction */
235 greg 2.47 VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.0*nd.pdot);
236 greg 2.6 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
237 greg 2.47 VSUM(nd.vrefl, r->rdir, r->ron, 2.0*r->rod);
238 greg 2.1 }
239     /* compute transmission */
240 greg 2.16 if (m->otype == MAT_TRANS2) {
241 greg 2.1 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
242     nd.tspec = nd.trans * m->oargs.farg[7];
243     nd.tdiff = nd.trans - nd.tspec;
244     if (nd.tspec > FTINY) {
245     nd.specfl |= SP_TRAN;
246 greg 2.4 /* check threshold */
247 greg 2.25 if (specthresh >= nd.tspec-FTINY)
248 greg 2.4 nd.specfl |= SP_TBLT;
249 greg 2.10 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
250 greg 2.1 VCOPY(nd.prdir, r->rdir);
251     } else {
252     for (i = 0; i < 3; i++) /* perturb */
253 greg 2.17 nd.prdir[i] = r->rdir[i] - r->pert[i];
254 greg 2.6 if (DOT(nd.prdir, r->ron) < -FTINY)
255     normalize(nd.prdir); /* OK */
256     else
257     VCOPY(nd.prdir, r->rdir);
258 greg 2.1 }
259     }
260     } else
261     nd.tdiff = nd.tspec = nd.trans = 0.0;
262    
263     /* diffuse reflection */
264     nd.rdiff = 1.0 - nd.trans - nd.rspec;
265    
266 greg 2.39 if (r->ro != NULL && isflat(r->ro->otype))
267 greg 2.4 nd.specfl |= SP_FLAT;
268    
269 greg 2.1 getacoords(r, &nd); /* set up coordinates */
270    
271 greg 2.10 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
272 greg 2.1 agaussamp(r, &nd);
273    
274     if (nd.rdiff > FTINY) { /* ambient from this side */
275 greg 2.43 copycolor(ctmp, nd.mcolor); /* modified by material color */
276 greg 2.52 scalecolor(ctmp, nd.rdiff);
277     if (nd.specfl & SP_RBLT) /* add in specular as well? */
278     addcolor(ctmp, nd.scolor);
279 greg 2.43 multambient(ctmp, r, nd.pnorm);
280 greg 2.1 addcolor(r->rcol, ctmp); /* add to returned color */
281     }
282     if (nd.tdiff > FTINY) { /* ambient from other side */
283 greg 2.31 FVECT bnorm;
284    
285 greg 2.1 flipsurface(r);
286 greg 2.31 bnorm[0] = -nd.pnorm[0];
287     bnorm[1] = -nd.pnorm[1];
288     bnorm[2] = -nd.pnorm[2];
289 greg 2.43 copycolor(ctmp, nd.mcolor); /* modified by color */
290 greg 2.4 if (nd.specfl & SP_TBLT)
291     scalecolor(ctmp, nd.trans);
292     else
293     scalecolor(ctmp, nd.tdiff);
294 greg 2.43 multambient(ctmp, r, bnorm);
295 greg 2.1 addcolor(r->rcol, ctmp);
296     flipsurface(r);
297     }
298     /* add direct component */
299     direct(r, diraniso, &nd);
300 greg 2.27
301     return(1);
302 greg 2.1 }
303    
304    
305 greg 2.34 static void
306 schorsch 2.41 getacoords( /* set up coordinate system */
307     RAY *r,
308 greg 2.54 ANISODAT *np
309 schorsch 2.41 )
310 greg 2.1 {
311 greg 2.54 MFUNC *mf;
312     int i;
313 greg 2.1
314     mf = getfunc(np->mp, 3, 0x7, 1);
315     setfunc(np->mp, r);
316     errno = 0;
317     for (i = 0; i < 3; i++)
318     np->u[i] = evalue(mf->ep[i]);
319 greg 2.54 if ((errno == EDOM) | (errno == ERANGE)) {
320 greg 2.1 objerror(np->mp, WARNING, "compute error");
321     np->specfl |= SP_BADU;
322     return;
323     }
324 greg 2.53 if (mf->fxp != &unitxf)
325     multv3(np->u, np->u, mf->fxp->xfm);
326 greg 2.1 fcross(np->v, np->pnorm, np->u);
327     if (normalize(np->v) == 0.0) {
328     objerror(np->mp, WARNING, "illegal orientation vector");
329     np->specfl |= SP_BADU;
330     return;
331     }
332     fcross(np->u, np->v, np->pnorm);
333     }
334    
335    
336 greg 2.34 static void
337 greg 2.46 agaussamp( /* sample anisotropic Gaussian specular */
338 schorsch 2.41 RAY *r,
339 greg 2.54 ANISODAT *np
340 schorsch 2.41 )
341 greg 2.1 {
342     RAY sr;
343     FVECT h;
344     double rv[2];
345     double d, sinp, cosp;
346 greg 2.47 COLOR scol;
347 greg 2.50 int maxiter, ntrials, nstarget, nstaken;
348 greg 2.54 int i;
349 greg 2.1 /* compute reflection */
350 greg 2.4 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
351 greg 2.43 rayorigin(&sr, SPECULAR, r, np->scolor) == 0) {
352 greg 2.50 nstarget = 1;
353 greg 2.47 if (specjitter > 1.5) { /* multiple samples? */
354 greg 2.50 nstarget = specjitter*r->rweight + .5;
355     if (sr.rweight <= minweight*nstarget)
356     nstarget = sr.rweight/minweight;
357     if (nstarget > 1) {
358     d = 1./nstarget;
359     scalecolor(sr.rcoef, d);
360 greg 2.48 sr.rweight *= d;
361 greg 2.47 } else
362 greg 2.50 nstarget = 1;
363 greg 2.47 }
364 greg 2.50 setcolor(scol, 0., 0., 0.);
365 greg 2.51 dimlist[ndims++] = (int)(size_t)np->mp;
366 greg 2.50 maxiter = MAXITER*nstarget;
367     for (nstaken = ntrials = 0; nstaken < nstarget &&
368     ntrials < maxiter; ntrials++) {
369     if (ntrials)
370 greg 2.32 d = frandom();
371     else
372     d = urand(ilhash(dimlist,ndims)+samplendx);
373     multisamp(rv, 2, d);
374     d = 2.0*PI * rv[0];
375 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
376     sinp = tsin(d) * np->v_alpha;
377 greg 2.47 d = 1./sqrt(cosp*cosp + sinp*sinp);
378     cosp *= d;
379     sinp *= d;
380     if ((0. <= specjitter) & (specjitter < 1.))
381     rv[1] = 1.0 - specjitter*rv[1];
382 greg 2.32 if (rv[1] <= FTINY)
383     d = 1.0;
384     else
385     d = sqrt(-log(rv[1]) /
386     (cosp*cosp/(np->u_alpha*np->u_alpha) +
387     sinp*sinp/(np->v_alpha*np->v_alpha)));
388     for (i = 0; i < 3; i++)
389     h[i] = np->pnorm[i] +
390     d*(cosp*np->u[i] + sinp*np->v[i]);
391     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
392 greg 2.47 VSUM(sr.rdir, r->rdir, h, d);
393 greg 2.50 /* sample rejection test */
394     if ((d = DOT(sr.rdir, r->ron)) <= FTINY)
395 greg 2.47 continue;
396     checknorm(sr.rdir);
397 greg 2.50 if (nstarget > 1) { /* W-G-M-D adjustment */
398     if (nstaken) rayclear(&sr);
399     rayvalue(&sr);
400     d = 2./(1. + r->rod/d);
401     scalecolor(sr.rcol, d);
402     addcolor(scol, sr.rcol);
403     } else {
404     rayvalue(&sr);
405     multcolor(sr.rcol, sr.rcoef);
406     addcolor(r->rcol, sr.rcol);
407 greg 2.32 }
408 greg 2.50 ++nstaken;
409     }
410     if (nstarget > 1) { /* final W-G-M-D weighting */
411     multcolor(scol, sr.rcoef);
412     d = (double)nstarget/ntrials;
413     scalecolor(scol, d);
414     addcolor(r->rcol, scol);
415 greg 2.32 }
416 greg 2.1 ndims--;
417     }
418     /* compute transmission */
419 greg 2.43 copycolor(sr.rcoef, np->mcolor); /* modify by material color */
420     scalecolor(sr.rcoef, np->tspec);
421 greg 2.7 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
422 greg 2.43 rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) {
423 greg 2.50 nstarget = 1;
424 greg 2.47 if (specjitter > 1.5) { /* multiple samples? */
425 greg 2.50 nstarget = specjitter*r->rweight + .5;
426     if (sr.rweight <= minweight*nstarget)
427     nstarget = sr.rweight/minweight;
428     if (nstarget > 1) {
429     d = 1./nstarget;
430 greg 2.48 scalecolor(sr.rcoef, d);
431     sr.rweight *= d;
432 greg 2.47 } else
433 greg 2.50 nstarget = 1;
434 greg 2.47 }
435 greg 2.51 dimlist[ndims++] = (int)(size_t)np->mp;
436 greg 2.50 maxiter = MAXITER*nstarget;
437     for (nstaken = ntrials = 0; nstaken < nstarget &&
438     ntrials < maxiter; ntrials++) {
439     if (ntrials)
440 greg 2.32 d = frandom();
441     else
442     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
443     multisamp(rv, 2, d);
444     d = 2.0*PI * rv[0];
445 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
446     sinp = tsin(d) * np->v_alpha;
447 greg 2.47 d = 1./sqrt(cosp*cosp + sinp*sinp);
448     cosp *= d;
449     sinp *= d;
450     if ((0. <= specjitter) & (specjitter < 1.))
451     rv[1] = 1.0 - specjitter*rv[1];
452 greg 2.32 if (rv[1] <= FTINY)
453     d = 1.0;
454     else
455     d = sqrt(-log(rv[1]) /
456     (cosp*cosp/(np->u_alpha*np->u_alpha) +
457 gwlarson 2.33 sinp*sinp/(np->v_alpha*np->v_alpha)));
458 greg 2.32 for (i = 0; i < 3; i++)
459     sr.rdir[i] = np->prdir[i] +
460     d*(cosp*np->u[i] + sinp*np->v[i]);
461 greg 2.47 if (DOT(sr.rdir, r->ron) >= -FTINY)
462     continue;
463     normalize(sr.rdir); /* OK, normalize */
464 greg 2.50 if (nstaken) /* multi-sampling */
465 greg 2.47 rayclear(&sr);
466     rayvalue(&sr);
467     multcolor(sr.rcol, sr.rcoef);
468     addcolor(r->rcol, sr.rcol);
469 greg 2.50 ++nstaken;
470 greg 2.32 }
471 greg 2.7 ndims--;
472     }
473 greg 2.1 }