ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.5
Committed: Wed Jan 15 11:02:43 1992 UTC (32 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.4: +9 -2 lines
Log Message:
added jittering to specular threshold test

File Contents

# User Rev Content
1 greg 2.1 /* Copyright (c) 1992 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Shading functions for anisotropic materials.
9     */
10    
11     #include "ray.h"
12    
13     #include "otypes.h"
14    
15     #include "func.h"
16    
17     #include "random.h"
18    
19 greg 2.4 extern double specthresh; /* specular sampling threshold */
20     extern double specjitter; /* specular sampling jitter */
21    
22 greg 2.1 /*
23     * This anisotropic reflection model uses a variant on the
24     * exponential Gaussian used in normal.c.
25     * We orient the surface towards the incoming ray, so a single
26     * surface can be used to represent an infinitely thin object.
27     *
28     * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
29     * 4+ ux uy uz funcfile [transform...]
30     * 0
31     * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
32     *
33     * Real arguments for MAT_TRANS2 are:
34     * 8 red grn blu rspec u-rough v-rough trans tspec
35     */
36    
37     #define BSPEC(m) (6.0) /* specularity parameter b */
38    
39     /* specularity flags */
40     #define SP_REFL 01 /* has reflected specular component */
41     #define SP_TRAN 02 /* has transmitted specular */
42     #define SP_PURE 010 /* purely specular (zero roughness) */
43 greg 2.4 #define SP_FLAT 020 /* reflecting surface is flat */
44     #define SP_RBLT 040 /* reflection below sample threshold */
45     #define SP_TBLT 0100 /* transmission below threshold */
46     #define SP_BADU 0200 /* bad u direction calculation */
47 greg 2.1
48     typedef struct {
49 greg 2.2 OBJREC *mp; /* material pointer */
50 greg 2.1 RAY *rp; /* ray pointer */
51     short specfl; /* specularity flags, defined above */
52     COLOR mcolor; /* color of this material */
53     COLOR scolor; /* color of specular component */
54     FVECT prdir; /* vector in transmitted direction */
55     FVECT u, v; /* u and v vectors orienting anisotropy */
56     double u_alpha; /* u roughness */
57     double v_alpha; /* v roughness */
58     double rdiff, rspec; /* reflected specular, diffuse */
59     double trans; /* transmissivity */
60     double tdiff, tspec; /* transmitted specular, diffuse */
61     FVECT pnorm; /* perturbed surface normal */
62     double pdot; /* perturbed dot product */
63     } ANISODAT; /* anisotropic material data */
64    
65    
66     diraniso(cval, np, ldir, omega) /* compute source contribution */
67     COLOR cval; /* returned coefficient */
68     register ANISODAT *np; /* material data */
69     FVECT ldir; /* light source direction */
70     double omega; /* light source size */
71     {
72     double ldot;
73     double dtmp, dtmp2;
74     FVECT h;
75     double au2, av2;
76     COLOR ctmp;
77    
78     setcolor(cval, 0.0, 0.0, 0.0);
79    
80     ldot = DOT(np->pnorm, ldir);
81    
82     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
83     return; /* wrong side */
84    
85     if (ldot > FTINY && np->rdiff > FTINY) {
86     /*
87     * Compute and add diffuse reflected component to returned
88     * color. The diffuse reflected component will always be
89     * modified by the color of the material.
90     */
91     copycolor(ctmp, np->mcolor);
92     dtmp = ldot * omega * np->rdiff / PI;
93     scalecolor(ctmp, dtmp);
94     addcolor(cval, ctmp);
95     }
96     if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE|SP_BADU)) == SP_REFL) {
97     /*
98     * Compute specular reflection coefficient using
99     * anisotropic gaussian distribution model.
100     */
101 greg 2.2 /* add source width if flat */
102     if (np->specfl & SP_FLAT)
103     au2 = av2 = omega/(4.0*PI);
104     else
105     au2 = av2 = 0.0;
106 greg 2.1 au2 += np->u_alpha * np->u_alpha;
107     av2 += np->v_alpha * np->v_alpha;
108     /* half vector */
109     h[0] = ldir[0] - np->rp->rdir[0];
110     h[1] = ldir[1] - np->rp->rdir[1];
111     h[2] = ldir[2] - np->rp->rdir[2];
112     normalize(h);
113     /* ellipse */
114     dtmp = DOT(np->u, h);
115     dtmp *= dtmp / au2;
116     dtmp2 = DOT(np->v, h);
117     dtmp2 *= dtmp2 / av2;
118     /* gaussian */
119     dtmp = (dtmp + dtmp2) / (1.0 + DOT(np->pnorm, h));
120     dtmp = exp(-2.0*dtmp) / (4.0*PI * sqrt(au2*av2));
121     /* worth using? */
122     if (dtmp > FTINY) {
123     copycolor(ctmp, np->scolor);
124     dtmp *= omega / np->pdot;
125     scalecolor(ctmp, dtmp);
126     addcolor(cval, ctmp);
127     }
128     }
129     if (ldot < -FTINY && np->tdiff > FTINY) {
130     /*
131     * Compute diffuse transmission.
132     */
133     copycolor(ctmp, np->mcolor);
134     dtmp = -ldot * omega * np->tdiff / PI;
135     scalecolor(ctmp, dtmp);
136     addcolor(cval, ctmp);
137     }
138     if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE|SP_BADU)) == SP_TRAN) {
139     /*
140     * Compute specular transmission. Specular transmission
141     * is always modified by material color.
142     */
143     /* roughness + source */
144     /* gaussian */
145     dtmp = 0.0;
146     /* worth using? */
147     if (dtmp > FTINY) {
148     copycolor(ctmp, np->mcolor);
149     dtmp *= np->tspec * omega / np->pdot;
150     scalecolor(ctmp, dtmp);
151     addcolor(cval, ctmp);
152     }
153     }
154     }
155    
156    
157     m_aniso(m, r) /* shade ray that hit something anisotropic */
158     register OBJREC *m;
159     register RAY *r;
160     {
161     ANISODAT nd;
162     double transtest, transdist;
163     double dtmp;
164     COLOR ctmp;
165     register int i;
166     /* easy shadow test */
167     if (r->crtype & SHADOW && m->otype != MAT_TRANS2)
168     return;
169    
170     if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
171     objerror(m, USER, "bad number of real arguments");
172 greg 2.2 nd.mp = m;
173 greg 2.1 nd.rp = r;
174     /* get material color */
175     setcolor(nd.mcolor, m->oargs.farg[0],
176     m->oargs.farg[1],
177     m->oargs.farg[2]);
178     /* get roughness */
179     nd.specfl = 0;
180     nd.u_alpha = m->oargs.farg[4];
181     nd.v_alpha = m->oargs.farg[5];
182     if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY)
183     nd.specfl |= SP_PURE;
184     /* reorient if necessary */
185     if (r->rod < 0.0)
186     flipsurface(r);
187     /* get modifiers */
188     raytexture(r, m->omod);
189     nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
190     if (nd.pdot < .001)
191     nd.pdot = .001; /* non-zero for diraniso() */
192     multcolor(nd.mcolor, r->pcol); /* modify material color */
193     transtest = 0;
194     /* get specular component */
195     if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
196     nd.specfl |= SP_REFL;
197     /* compute specular color */
198     if (m->otype == MAT_METAL2)
199     copycolor(nd.scolor, nd.mcolor);
200     else
201     setcolor(nd.scolor, 1.0, 1.0, 1.0);
202     scalecolor(nd.scolor, nd.rspec);
203     /* improved model */
204     dtmp = exp(-BSPEC(m)*nd.pdot);
205     for (i = 0; i < 3; i++)
206     colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
207     nd.rspec += (1.0-nd.rspec)*dtmp;
208 greg 2.4 /* check threshold */
209 greg 2.5 if (specthresh > FTINY &&
210     ((specthresh >= 1.-FTINY ||
211     specthresh + (.1 - .2*urand(8199+samplendx))
212     > nd.rspec)))
213 greg 2.4 nd.specfl |= SP_RBLT;
214 greg 2.1
215     if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
216     RAY lr;
217     if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
218     for (i = 0; i < 3; i++)
219     lr.rdir[i] = r->rdir[i] +
220     2.0*nd.pdot*nd.pnorm[i];
221     rayvalue(&lr);
222     multcolor(lr.rcol, nd.scolor);
223     addcolor(r->rcol, lr.rcol);
224     }
225     }
226     }
227     /* compute transmission */
228     if (m->otype == MAT_TRANS) {
229     nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
230     nd.tspec = nd.trans * m->oargs.farg[7];
231     nd.tdiff = nd.trans - nd.tspec;
232     if (nd.tspec > FTINY) {
233     nd.specfl |= SP_TRAN;
234 greg 2.4 /* check threshold */
235 greg 2.5 if (specthresh > FTINY &&
236     ((specthresh >= 1.-FTINY ||
237     specthresh +
238     (.1 - .2*urand(7241+samplendx))
239     > nd.tspec)))
240 greg 2.4 nd.specfl |= SP_TBLT;
241 greg 2.1 if (r->crtype & SHADOW ||
242     DOT(r->pert,r->pert) <= FTINY*FTINY) {
243     VCOPY(nd.prdir, r->rdir);
244     transtest = 2;
245     } else {
246     for (i = 0; i < 3; i++) /* perturb */
247     nd.prdir[i] = r->rdir[i] -
248     .75*r->pert[i];
249     normalize(nd.prdir);
250     }
251     }
252     } else
253     nd.tdiff = nd.tspec = nd.trans = 0.0;
254     /* transmitted ray */
255     if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
256     RAY lr;
257     if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
258     VCOPY(lr.rdir, nd.prdir);
259     rayvalue(&lr);
260     scalecolor(lr.rcol, nd.tspec);
261     multcolor(lr.rcol, nd.mcolor); /* modified by color */
262     addcolor(r->rcol, lr.rcol);
263     transtest *= bright(lr.rcol);
264     transdist = r->rot + lr.rt;
265     }
266     }
267    
268     if (r->crtype & SHADOW) /* the rest is shadow */
269     return;
270     /* diffuse reflection */
271     nd.rdiff = 1.0 - nd.trans - nd.rspec;
272    
273     if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
274     return; /* 100% pure specular */
275    
276 greg 2.4 if (r->ro->otype == OBJ_FACE || r->ro->otype == OBJ_RING)
277     nd.specfl |= SP_FLAT;
278    
279 greg 2.1 getacoords(r, &nd); /* set up coordinates */
280    
281     if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & (SP_PURE|SP_BADU)))
282     agaussamp(r, &nd);
283    
284     if (nd.rdiff > FTINY) { /* ambient from this side */
285     ambient(ctmp, r);
286 greg 2.4 if (nd.specfl & SP_RBLT)
287     scalecolor(ctmp, 1.0-nd.trans);
288     else
289     scalecolor(ctmp, nd.rdiff);
290 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by material color */
291     addcolor(r->rcol, ctmp); /* add to returned color */
292     }
293     if (nd.tdiff > FTINY) { /* ambient from other side */
294     flipsurface(r);
295     ambient(ctmp, r);
296 greg 2.4 if (nd.specfl & SP_TBLT)
297     scalecolor(ctmp, nd.trans);
298     else
299     scalecolor(ctmp, nd.tdiff);
300 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by color */
301     addcolor(r->rcol, ctmp);
302     flipsurface(r);
303     }
304     /* add direct component */
305     direct(r, diraniso, &nd);
306     /* check distance */
307     if (transtest > bright(r->rcol))
308     r->rt = transdist;
309     }
310    
311    
312     static
313     getacoords(r, np) /* set up coordinate system */
314     RAY *r;
315     register ANISODAT *np;
316     {
317     register MFUNC *mf;
318     register int i;
319    
320     mf = getfunc(np->mp, 3, 0x7, 1);
321     setfunc(np->mp, r);
322     errno = 0;
323     for (i = 0; i < 3; i++)
324     np->u[i] = evalue(mf->ep[i]);
325     if (errno) {
326     objerror(np->mp, WARNING, "compute error");
327     np->specfl |= SP_BADU;
328     return;
329     }
330     multv3(np->u, np->u, mf->f->xfm);
331     fcross(np->v, np->pnorm, np->u);
332     if (normalize(np->v) == 0.0) {
333     objerror(np->mp, WARNING, "illegal orientation vector");
334     np->specfl |= SP_BADU;
335     return;
336     }
337     fcross(np->u, np->v, np->pnorm);
338     }
339    
340    
341     static
342     agaussamp(r, np) /* sample anisotropic gaussian specular */
343     RAY *r;
344     register ANISODAT *np;
345     {
346     RAY sr;
347     FVECT h;
348     double rv[2];
349     double d, sinp, cosp;
350 greg 2.3 int ntries;
351 greg 2.1 register int i;
352     /* compute reflection */
353 greg 2.4 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
354 greg 2.1 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
355     dimlist[ndims++] = (int)np->mp;
356 greg 2.3 for (ntries = 0; ntries < 10; ntries++) {
357     dimlist[ndims] = ntries * 3601;
358     d = urand(ilhash(dimlist,ndims+1)+samplendx);
359     multisamp(rv, 2, d);
360     d = 2.0*PI * rv[0];
361     cosp = np->u_alpha * cos(d);
362     sinp = np->v_alpha * sin(d);
363     d = sqrt(cosp*cosp + sinp*sinp);
364     cosp /= d;
365     sinp /= d;
366 greg 2.4 rv[1] = 1.0 - specjitter*rv[1];
367 greg 2.3 if (rv[1] <= FTINY)
368     d = 1.0;
369     else
370     d = sqrt(-log(rv[1]) /
371     (cosp*cosp/(np->u_alpha*np->u_alpha) +
372     sinp*sinp/(np->v_alpha*np->v_alpha)));
373     for (i = 0; i < 3; i++)
374     h[i] = np->pnorm[i] +
375 greg 2.1 d*(cosp*np->u[i] + sinp*np->v[i]);
376 greg 2.3 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
377     for (i = 0; i < 3; i++)
378     sr.rdir[i] = r->rdir[i] + d*h[i];
379     if (DOT(sr.rdir, r->ron) > FTINY) {
380     rayvalue(&sr);
381     multcolor(sr.rcol, np->scolor);
382     addcolor(r->rcol, sr.rcol);
383     break;
384     }
385     }
386 greg 2.1 ndims--;
387     }
388     /* compute transmission */
389     }