ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.46
Committed: Fri Oct 1 18:11:18 2010 UTC (13 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.45: +10 -8 lines
Log Message:
Updated reflection model to match paper by Geisler-Moroder an Duer

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.46 static const char RCSid[] = "$Id: aniso.c,v 2.45 2010/09/26 15:51:15 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading functions for anisotropic materials.
6     */
7    
8 greg 2.35 #include "copyright.h"
9 greg 2.34
10 greg 2.1 #include "ray.h"
11 greg 2.40 #include "ambient.h"
12 greg 2.1 #include "otypes.h"
13 schorsch 2.41 #include "rtotypes.h"
14     #include "source.h"
15 greg 2.1 #include "func.h"
16     #include "random.h"
17    
18 greg 2.32 #ifndef MAXITER
19     #define MAXITER 10 /* maximum # specular ray attempts */
20     #endif
21    
22 greg 2.1 /*
23 greg 2.22 * This routine implements the anisotropic Gaussian
24     * model described by Ward in Siggraph `92 article.
25 greg 2.1 * We orient the surface towards the incoming ray, so a single
26     * surface can be used to represent an infinitely thin object.
27     *
28     * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
29     * 4+ ux uy uz funcfile [transform...]
30     * 0
31     * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
32     *
33     * Real arguments for MAT_TRANS2 are:
34     * 8 red grn blu rspec u-rough v-rough trans tspec
35     */
36    
37     /* specularity flags */
38     #define SP_REFL 01 /* has reflected specular component */
39     #define SP_TRAN 02 /* has transmitted specular */
40 greg 2.10 #define SP_FLAT 04 /* reflecting surface is flat */
41     #define SP_RBLT 010 /* reflection below sample threshold */
42     #define SP_TBLT 020 /* transmission below threshold */
43     #define SP_BADU 040 /* bad u direction calculation */
44 greg 2.1
45     typedef struct {
46 greg 2.2 OBJREC *mp; /* material pointer */
47 greg 2.1 RAY *rp; /* ray pointer */
48     short specfl; /* specularity flags, defined above */
49     COLOR mcolor; /* color of this material */
50     COLOR scolor; /* color of specular component */
51 greg 2.6 FVECT vrefl; /* vector in reflected direction */
52 greg 2.1 FVECT prdir; /* vector in transmitted direction */
53     FVECT u, v; /* u and v vectors orienting anisotropy */
54 greg 2.18 double u_alpha; /* u roughness */
55     double v_alpha; /* v roughness */
56 greg 2.1 double rdiff, rspec; /* reflected specular, diffuse */
57     double trans; /* transmissivity */
58     double tdiff, tspec; /* transmitted specular, diffuse */
59     FVECT pnorm; /* perturbed surface normal */
60     double pdot; /* perturbed dot product */
61     } ANISODAT; /* anisotropic material data */
62    
63 schorsch 2.41 static srcdirf_t diraniso;
64     static void getacoords(RAY *r, ANISODAT *np);
65     static void agaussamp(RAY *r, ANISODAT *np);
66 greg 2.34
67 greg 2.1
68 greg 2.34 static void
69 schorsch 2.41 diraniso( /* compute source contribution */
70     COLOR cval, /* returned coefficient */
71     void *nnp, /* material data */
72     FVECT ldir, /* light source direction */
73     double omega /* light source size */
74     )
75 greg 2.1 {
76 schorsch 2.41 register ANISODAT *np = nnp;
77 greg 2.1 double ldot;
78 greg 2.16 double dtmp, dtmp1, dtmp2;
79 greg 2.1 FVECT h;
80     double au2, av2;
81     COLOR ctmp;
82    
83     setcolor(cval, 0.0, 0.0, 0.0);
84    
85     ldot = DOT(np->pnorm, ldir);
86    
87     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
88     return; /* wrong side */
89    
90     if (ldot > FTINY && np->rdiff > FTINY) {
91     /*
92     * Compute and add diffuse reflected component to returned
93     * color. The diffuse reflected component will always be
94     * modified by the color of the material.
95     */
96     copycolor(ctmp, np->mcolor);
97 greg 2.42 dtmp = ldot * omega * np->rdiff * (1.0/PI);
98 greg 2.1 scalecolor(ctmp, dtmp);
99     addcolor(cval, ctmp);
100     }
101 greg 2.10 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
102 greg 2.1 /*
103     * Compute specular reflection coefficient using
104 greg 2.46 * anisotropic Gaussian distribution model.
105 greg 2.1 */
106 greg 2.2 /* add source width if flat */
107     if (np->specfl & SP_FLAT)
108 greg 2.42 au2 = av2 = omega * (0.25/PI);
109 greg 2.2 else
110     au2 = av2 = 0.0;
111 greg 2.18 au2 += np->u_alpha*np->u_alpha;
112     av2 += np->v_alpha*np->v_alpha;
113 greg 2.1 /* half vector */
114     h[0] = ldir[0] - np->rp->rdir[0];
115     h[1] = ldir[1] - np->rp->rdir[1];
116     h[2] = ldir[2] - np->rp->rdir[2];
117     /* ellipse */
118 greg 2.16 dtmp1 = DOT(np->u, h);
119     dtmp1 *= dtmp1 / au2;
120 greg 2.1 dtmp2 = DOT(np->v, h);
121     dtmp2 *= dtmp2 / av2;
122 greg 2.46 /* new W-G-M-D model */
123 greg 2.23 dtmp = DOT(np->pnorm, h);
124 greg 2.46 dtmp *= dtmp;
125     dtmp1 = (dtmp1 + dtmp2) / dtmp;
126     dtmp = exp(-dtmp1) * DOT(h,h) /
127     (PI * dtmp*dtmp * sqrt(au2*av2));
128 greg 2.1 /* worth using? */
129     if (dtmp > FTINY) {
130     copycolor(ctmp, np->scolor);
131 greg 2.46 dtmp *= ldot * omega;
132 greg 2.1 scalecolor(ctmp, dtmp);
133     addcolor(cval, ctmp);
134     }
135     }
136     if (ldot < -FTINY && np->tdiff > FTINY) {
137     /*
138     * Compute diffuse transmission.
139     */
140     copycolor(ctmp, np->mcolor);
141 greg 2.42 dtmp = -ldot * omega * np->tdiff * (1.0/PI);
142 greg 2.1 scalecolor(ctmp, dtmp);
143     addcolor(cval, ctmp);
144     }
145 greg 2.10 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
146 greg 2.1 /*
147     * Compute specular transmission. Specular transmission
148     * is always modified by material color.
149     */
150     /* roughness + source */
151 greg 2.42 au2 = av2 = omega * (1.0/PI);
152 greg 2.18 au2 += np->u_alpha*np->u_alpha;
153     av2 += np->v_alpha*np->v_alpha;
154 greg 2.16 /* "half vector" */
155     h[0] = ldir[0] - np->prdir[0];
156     h[1] = ldir[1] - np->prdir[1];
157     h[2] = ldir[2] - np->prdir[2];
158 greg 2.19 dtmp = DOT(h,h);
159 greg 2.16 if (dtmp > FTINY*FTINY) {
160 greg 2.19 dtmp1 = DOT(h,np->pnorm);
161     dtmp = 1.0 - dtmp1*dtmp1/dtmp;
162     if (dtmp > FTINY*FTINY) {
163     dtmp1 = DOT(h,np->u);
164 greg 2.23 dtmp1 *= dtmp1 / au2;
165 greg 2.19 dtmp2 = DOT(h,np->v);
166 greg 2.23 dtmp2 *= dtmp2 / av2;
167 greg 2.19 dtmp = (dtmp1 + dtmp2) / dtmp;
168     }
169 greg 2.16 } else
170     dtmp = 0.0;
171 greg 2.46 /* Gaussian */
172 greg 2.44 dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2));
173 greg 2.1 /* worth using? */
174     if (dtmp > FTINY) {
175     copycolor(ctmp, np->mcolor);
176 greg 2.16 dtmp *= np->tspec * omega;
177 greg 2.1 scalecolor(ctmp, dtmp);
178     addcolor(cval, ctmp);
179     }
180     }
181     }
182    
183    
184 schorsch 2.41 extern int
185     m_aniso( /* shade ray that hit something anisotropic */
186     register OBJREC *m,
187     register RAY *r
188     )
189 greg 2.1 {
190     ANISODAT nd;
191     COLOR ctmp;
192     register int i;
193     /* easy shadow test */
194 greg 2.10 if (r->crtype & SHADOW)
195 greg 2.27 return(1);
196 greg 2.1
197     if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
198     objerror(m, USER, "bad number of real arguments");
199 greg 2.36 /* check for back side */
200     if (r->rod < 0.0) {
201     if (!backvis && m->otype != MAT_TRANS2) {
202     raytrans(r);
203     return(1);
204     }
205     raytexture(r, m->omod);
206     flipsurface(r); /* reorient if backvis */
207     } else
208     raytexture(r, m->omod);
209     /* get material color */
210 greg 2.2 nd.mp = m;
211 greg 2.1 nd.rp = r;
212     setcolor(nd.mcolor, m->oargs.farg[0],
213     m->oargs.farg[1],
214     m->oargs.farg[2]);
215     /* get roughness */
216     nd.specfl = 0;
217 greg 2.18 nd.u_alpha = m->oargs.farg[4];
218     nd.v_alpha = m->oargs.farg[5];
219 greg 2.45 if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY)
220 greg 2.10 objerror(m, USER, "roughness too small");
221 greg 2.36
222 greg 2.1 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
223     if (nd.pdot < .001)
224     nd.pdot = .001; /* non-zero for diraniso() */
225     multcolor(nd.mcolor, r->pcol); /* modify material color */
226     /* get specular component */
227     if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
228     nd.specfl |= SP_REFL;
229     /* compute specular color */
230     if (m->otype == MAT_METAL2)
231     copycolor(nd.scolor, nd.mcolor);
232     else
233     setcolor(nd.scolor, 1.0, 1.0, 1.0);
234     scalecolor(nd.scolor, nd.rspec);
235 greg 2.4 /* check threshold */
236 greg 2.25 if (specthresh >= nd.rspec-FTINY)
237 greg 2.4 nd.specfl |= SP_RBLT;
238 greg 2.6 /* compute refl. direction */
239     for (i = 0; i < 3; i++)
240     nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
241     if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
242     for (i = 0; i < 3; i++) /* safety measure */
243     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
244 greg 2.1 }
245     /* compute transmission */
246 greg 2.16 if (m->otype == MAT_TRANS2) {
247 greg 2.1 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
248     nd.tspec = nd.trans * m->oargs.farg[7];
249     nd.tdiff = nd.trans - nd.tspec;
250     if (nd.tspec > FTINY) {
251     nd.specfl |= SP_TRAN;
252 greg 2.4 /* check threshold */
253 greg 2.25 if (specthresh >= nd.tspec-FTINY)
254 greg 2.4 nd.specfl |= SP_TBLT;
255 greg 2.10 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
256 greg 2.1 VCOPY(nd.prdir, r->rdir);
257     } else {
258     for (i = 0; i < 3; i++) /* perturb */
259 greg 2.17 nd.prdir[i] = r->rdir[i] - r->pert[i];
260 greg 2.6 if (DOT(nd.prdir, r->ron) < -FTINY)
261     normalize(nd.prdir); /* OK */
262     else
263     VCOPY(nd.prdir, r->rdir);
264 greg 2.1 }
265     }
266     } else
267     nd.tdiff = nd.tspec = nd.trans = 0.0;
268    
269     /* diffuse reflection */
270     nd.rdiff = 1.0 - nd.trans - nd.rspec;
271    
272 greg 2.39 if (r->ro != NULL && isflat(r->ro->otype))
273 greg 2.4 nd.specfl |= SP_FLAT;
274    
275 greg 2.1 getacoords(r, &nd); /* set up coordinates */
276    
277 greg 2.10 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
278 greg 2.1 agaussamp(r, &nd);
279    
280     if (nd.rdiff > FTINY) { /* ambient from this side */
281 greg 2.43 copycolor(ctmp, nd.mcolor); /* modified by material color */
282 greg 2.4 if (nd.specfl & SP_RBLT)
283     scalecolor(ctmp, 1.0-nd.trans);
284     else
285     scalecolor(ctmp, nd.rdiff);
286 greg 2.43 multambient(ctmp, r, nd.pnorm);
287 greg 2.1 addcolor(r->rcol, ctmp); /* add to returned color */
288     }
289     if (nd.tdiff > FTINY) { /* ambient from other side */
290 greg 2.31 FVECT bnorm;
291    
292 greg 2.1 flipsurface(r);
293 greg 2.31 bnorm[0] = -nd.pnorm[0];
294     bnorm[1] = -nd.pnorm[1];
295     bnorm[2] = -nd.pnorm[2];
296 greg 2.43 copycolor(ctmp, nd.mcolor); /* modified by color */
297 greg 2.4 if (nd.specfl & SP_TBLT)
298     scalecolor(ctmp, nd.trans);
299     else
300     scalecolor(ctmp, nd.tdiff);
301 greg 2.43 multambient(ctmp, r, bnorm);
302 greg 2.1 addcolor(r->rcol, ctmp);
303     flipsurface(r);
304     }
305     /* add direct component */
306     direct(r, diraniso, &nd);
307 greg 2.27
308     return(1);
309 greg 2.1 }
310    
311    
312 greg 2.34 static void
313 schorsch 2.41 getacoords( /* set up coordinate system */
314     RAY *r,
315     register ANISODAT *np
316     )
317 greg 2.1 {
318     register MFUNC *mf;
319     register int i;
320    
321     mf = getfunc(np->mp, 3, 0x7, 1);
322     setfunc(np->mp, r);
323     errno = 0;
324     for (i = 0; i < 3; i++)
325     np->u[i] = evalue(mf->ep[i]);
326 greg 2.37 if (errno == EDOM || errno == ERANGE) {
327 greg 2.1 objerror(np->mp, WARNING, "compute error");
328     np->specfl |= SP_BADU;
329     return;
330     }
331 greg 2.16 if (mf->f != &unitxf)
332     multv3(np->u, np->u, mf->f->xfm);
333 greg 2.1 fcross(np->v, np->pnorm, np->u);
334     if (normalize(np->v) == 0.0) {
335     objerror(np->mp, WARNING, "illegal orientation vector");
336     np->specfl |= SP_BADU;
337     return;
338     }
339     fcross(np->u, np->v, np->pnorm);
340     }
341    
342    
343 greg 2.34 static void
344 greg 2.46 agaussamp( /* sample anisotropic Gaussian specular */
345 schorsch 2.41 RAY *r,
346     register ANISODAT *np
347     )
348 greg 2.1 {
349     RAY sr;
350     FVECT h;
351     double rv[2];
352     double d, sinp, cosp;
353 greg 2.32 int niter;
354 greg 2.1 register int i;
355     /* compute reflection */
356 greg 2.4 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
357 greg 2.43 rayorigin(&sr, SPECULAR, r, np->scolor) == 0) {
358 greg 2.1 dimlist[ndims++] = (int)np->mp;
359 greg 2.32 for (niter = 0; niter < MAXITER; niter++) {
360     if (niter)
361     d = frandom();
362     else
363     d = urand(ilhash(dimlist,ndims)+samplendx);
364     multisamp(rv, 2, d);
365     d = 2.0*PI * rv[0];
366 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
367     sinp = tsin(d) * np->v_alpha;
368 greg 2.32 d = sqrt(cosp*cosp + sinp*sinp);
369     cosp /= d;
370     sinp /= d;
371     rv[1] = 1.0 - specjitter*rv[1];
372     if (rv[1] <= FTINY)
373     d = 1.0;
374     else
375     d = sqrt(-log(rv[1]) /
376     (cosp*cosp/(np->u_alpha*np->u_alpha) +
377     sinp*sinp/(np->v_alpha*np->v_alpha)));
378     for (i = 0; i < 3; i++)
379     h[i] = np->pnorm[i] +
380     d*(cosp*np->u[i] + sinp*np->v[i]);
381     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
382     for (i = 0; i < 3; i++)
383     sr.rdir[i] = r->rdir[i] + d*h[i];
384     if (DOT(sr.rdir, r->ron) > FTINY) {
385 greg 2.45 checknorm(sr.rdir);
386 greg 2.32 rayvalue(&sr);
387 greg 2.43 multcolor(sr.rcol, sr.rcoef);
388 greg 2.32 addcolor(r->rcol, sr.rcol);
389     break;
390     }
391     }
392 greg 2.1 ndims--;
393     }
394     /* compute transmission */
395 greg 2.43 copycolor(sr.rcoef, np->mcolor); /* modify by material color */
396     scalecolor(sr.rcoef, np->tspec);
397 greg 2.7 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
398 greg 2.43 rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) {
399 greg 2.7 dimlist[ndims++] = (int)np->mp;
400 greg 2.32 for (niter = 0; niter < MAXITER; niter++) {
401     if (niter)
402     d = frandom();
403     else
404     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
405     multisamp(rv, 2, d);
406     d = 2.0*PI * rv[0];
407 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
408     sinp = tsin(d) * np->v_alpha;
409 greg 2.32 d = sqrt(cosp*cosp + sinp*sinp);
410     cosp /= d;
411     sinp /= d;
412     rv[1] = 1.0 - specjitter*rv[1];
413     if (rv[1] <= FTINY)
414     d = 1.0;
415     else
416     d = sqrt(-log(rv[1]) /
417     (cosp*cosp/(np->u_alpha*np->u_alpha) +
418 gwlarson 2.33 sinp*sinp/(np->v_alpha*np->v_alpha)));
419 greg 2.32 for (i = 0; i < 3; i++)
420     sr.rdir[i] = np->prdir[i] +
421     d*(cosp*np->u[i] + sinp*np->v[i]);
422     if (DOT(sr.rdir, r->ron) < -FTINY) {
423     normalize(sr.rdir); /* OK, normalize */
424     rayvalue(&sr);
425 greg 2.43 multcolor(sr.rcol, sr.rcoef);
426 greg 2.32 addcolor(r->rcol, sr.rcol);
427     break;
428     }
429     }
430 greg 2.7 ndims--;
431     }
432 greg 2.1 }