ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.42
Committed: Mon Sep 20 17:32:04 2004 UTC (19 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R6, rad3R6P1
Changes since 2.41: +7 -9 lines
Log Message:
Corrected Gaussian reflectance model normalization (cosine factor)

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.42 static const char RCSid[] = "$Id: aniso.c,v 2.41 2004/03/30 16:13:00 schorsch Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading functions for anisotropic materials.
6     */
7    
8 greg 2.35 #include "copyright.h"
9 greg 2.34
10 greg 2.1 #include "ray.h"
11 greg 2.40 #include "ambient.h"
12 greg 2.1 #include "otypes.h"
13 schorsch 2.41 #include "rtotypes.h"
14     #include "source.h"
15 greg 2.1 #include "func.h"
16     #include "random.h"
17    
18 greg 2.32 #ifndef MAXITER
19     #define MAXITER 10 /* maximum # specular ray attempts */
20     #endif
21    
22 greg 2.1 /*
23 greg 2.22 * This routine implements the anisotropic Gaussian
24     * model described by Ward in Siggraph `92 article.
25 greg 2.1 * We orient the surface towards the incoming ray, so a single
26     * surface can be used to represent an infinitely thin object.
27     *
28     * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
29     * 4+ ux uy uz funcfile [transform...]
30     * 0
31     * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
32     *
33     * Real arguments for MAT_TRANS2 are:
34     * 8 red grn blu rspec u-rough v-rough trans tspec
35     */
36    
37     /* specularity flags */
38     #define SP_REFL 01 /* has reflected specular component */
39     #define SP_TRAN 02 /* has transmitted specular */
40 greg 2.10 #define SP_FLAT 04 /* reflecting surface is flat */
41     #define SP_RBLT 010 /* reflection below sample threshold */
42     #define SP_TBLT 020 /* transmission below threshold */
43     #define SP_BADU 040 /* bad u direction calculation */
44 greg 2.1
45     typedef struct {
46 greg 2.2 OBJREC *mp; /* material pointer */
47 greg 2.1 RAY *rp; /* ray pointer */
48     short specfl; /* specularity flags, defined above */
49     COLOR mcolor; /* color of this material */
50     COLOR scolor; /* color of specular component */
51 greg 2.6 FVECT vrefl; /* vector in reflected direction */
52 greg 2.1 FVECT prdir; /* vector in transmitted direction */
53     FVECT u, v; /* u and v vectors orienting anisotropy */
54 greg 2.18 double u_alpha; /* u roughness */
55     double v_alpha; /* v roughness */
56 greg 2.1 double rdiff, rspec; /* reflected specular, diffuse */
57     double trans; /* transmissivity */
58     double tdiff, tspec; /* transmitted specular, diffuse */
59     FVECT pnorm; /* perturbed surface normal */
60     double pdot; /* perturbed dot product */
61     } ANISODAT; /* anisotropic material data */
62    
63 schorsch 2.41 static srcdirf_t diraniso;
64     static void getacoords(RAY *r, ANISODAT *np);
65     static void agaussamp(RAY *r, ANISODAT *np);
66 greg 2.34
67 greg 2.1
68 greg 2.34 static void
69 schorsch 2.41 diraniso( /* compute source contribution */
70     COLOR cval, /* returned coefficient */
71     void *nnp, /* material data */
72     FVECT ldir, /* light source direction */
73     double omega /* light source size */
74     )
75 greg 2.1 {
76 schorsch 2.41 register ANISODAT *np = nnp;
77 greg 2.1 double ldot;
78 greg 2.16 double dtmp, dtmp1, dtmp2;
79 greg 2.1 FVECT h;
80     double au2, av2;
81     COLOR ctmp;
82    
83     setcolor(cval, 0.0, 0.0, 0.0);
84    
85     ldot = DOT(np->pnorm, ldir);
86    
87     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
88     return; /* wrong side */
89    
90     if (ldot > FTINY && np->rdiff > FTINY) {
91     /*
92     * Compute and add diffuse reflected component to returned
93     * color. The diffuse reflected component will always be
94     * modified by the color of the material.
95     */
96     copycolor(ctmp, np->mcolor);
97 greg 2.42 dtmp = ldot * omega * np->rdiff * (1.0/PI);
98 greg 2.1 scalecolor(ctmp, dtmp);
99     addcolor(cval, ctmp);
100     }
101 greg 2.10 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
102 greg 2.1 /*
103     * Compute specular reflection coefficient using
104     * anisotropic gaussian distribution model.
105     */
106 greg 2.2 /* add source width if flat */
107     if (np->specfl & SP_FLAT)
108 greg 2.42 au2 = av2 = omega * (0.25/PI);
109 greg 2.2 else
110     au2 = av2 = 0.0;
111 greg 2.18 au2 += np->u_alpha*np->u_alpha;
112     av2 += np->v_alpha*np->v_alpha;
113 greg 2.1 /* half vector */
114     h[0] = ldir[0] - np->rp->rdir[0];
115     h[1] = ldir[1] - np->rp->rdir[1];
116     h[2] = ldir[2] - np->rp->rdir[2];
117     /* ellipse */
118 greg 2.16 dtmp1 = DOT(np->u, h);
119     dtmp1 *= dtmp1 / au2;
120 greg 2.1 dtmp2 = DOT(np->v, h);
121     dtmp2 *= dtmp2 / av2;
122     /* gaussian */
123 greg 2.23 dtmp = DOT(np->pnorm, h);
124     dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp);
125 greg 2.42 dtmp = exp(-dtmp) / (4.0*PI * np->pdot * sqrt(au2*av2));
126 greg 2.1 /* worth using? */
127     if (dtmp > FTINY) {
128     copycolor(ctmp, np->scolor);
129 greg 2.16 dtmp *= omega;
130 greg 2.1 scalecolor(ctmp, dtmp);
131     addcolor(cval, ctmp);
132     }
133     }
134     if (ldot < -FTINY && np->tdiff > FTINY) {
135     /*
136     * Compute diffuse transmission.
137     */
138     copycolor(ctmp, np->mcolor);
139 greg 2.42 dtmp = -ldot * omega * np->tdiff * (1.0/PI);
140 greg 2.1 scalecolor(ctmp, dtmp);
141     addcolor(cval, ctmp);
142     }
143 greg 2.10 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
144 greg 2.1 /*
145     * Compute specular transmission. Specular transmission
146     * is always modified by material color.
147     */
148     /* roughness + source */
149 greg 2.42 au2 = av2 = omega * (1.0/PI);
150 greg 2.18 au2 += np->u_alpha*np->u_alpha;
151     av2 += np->v_alpha*np->v_alpha;
152 greg 2.16 /* "half vector" */
153     h[0] = ldir[0] - np->prdir[0];
154     h[1] = ldir[1] - np->prdir[1];
155     h[2] = ldir[2] - np->prdir[2];
156 greg 2.19 dtmp = DOT(h,h);
157 greg 2.16 if (dtmp > FTINY*FTINY) {
158 greg 2.19 dtmp1 = DOT(h,np->pnorm);
159     dtmp = 1.0 - dtmp1*dtmp1/dtmp;
160     if (dtmp > FTINY*FTINY) {
161     dtmp1 = DOT(h,np->u);
162 greg 2.23 dtmp1 *= dtmp1 / au2;
163 greg 2.19 dtmp2 = DOT(h,np->v);
164 greg 2.23 dtmp2 *= dtmp2 / av2;
165 greg 2.19 dtmp = (dtmp1 + dtmp2) / dtmp;
166     }
167 greg 2.16 } else
168     dtmp = 0.0;
169 greg 2.1 /* gaussian */
170 greg 2.42 dtmp = exp(-dtmp) / (PI * np->pdot * sqrt(au2*av2));
171 greg 2.1 /* worth using? */
172     if (dtmp > FTINY) {
173     copycolor(ctmp, np->mcolor);
174 greg 2.16 dtmp *= np->tspec * omega;
175 greg 2.1 scalecolor(ctmp, dtmp);
176     addcolor(cval, ctmp);
177     }
178     }
179     }
180    
181    
182 schorsch 2.41 extern int
183     m_aniso( /* shade ray that hit something anisotropic */
184     register OBJREC *m,
185     register RAY *r
186     )
187 greg 2.1 {
188     ANISODAT nd;
189     COLOR ctmp;
190     register int i;
191     /* easy shadow test */
192 greg 2.10 if (r->crtype & SHADOW)
193 greg 2.27 return(1);
194 greg 2.1
195     if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
196     objerror(m, USER, "bad number of real arguments");
197 greg 2.36 /* check for back side */
198     if (r->rod < 0.0) {
199     if (!backvis && m->otype != MAT_TRANS2) {
200     raytrans(r);
201     return(1);
202     }
203     raytexture(r, m->omod);
204     flipsurface(r); /* reorient if backvis */
205     } else
206     raytexture(r, m->omod);
207     /* get material color */
208 greg 2.2 nd.mp = m;
209 greg 2.1 nd.rp = r;
210     setcolor(nd.mcolor, m->oargs.farg[0],
211     m->oargs.farg[1],
212     m->oargs.farg[2]);
213     /* get roughness */
214     nd.specfl = 0;
215 greg 2.18 nd.u_alpha = m->oargs.farg[4];
216     nd.v_alpha = m->oargs.farg[5];
217     if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
218 greg 2.10 objerror(m, USER, "roughness too small");
219 greg 2.36
220 greg 2.1 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
221     if (nd.pdot < .001)
222     nd.pdot = .001; /* non-zero for diraniso() */
223     multcolor(nd.mcolor, r->pcol); /* modify material color */
224     /* get specular component */
225     if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
226     nd.specfl |= SP_REFL;
227     /* compute specular color */
228     if (m->otype == MAT_METAL2)
229     copycolor(nd.scolor, nd.mcolor);
230     else
231     setcolor(nd.scolor, 1.0, 1.0, 1.0);
232     scalecolor(nd.scolor, nd.rspec);
233 greg 2.4 /* check threshold */
234 greg 2.25 if (specthresh >= nd.rspec-FTINY)
235 greg 2.4 nd.specfl |= SP_RBLT;
236 greg 2.6 /* compute refl. direction */
237     for (i = 0; i < 3; i++)
238     nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
239     if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
240     for (i = 0; i < 3; i++) /* safety measure */
241     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
242 greg 2.1 }
243     /* compute transmission */
244 greg 2.16 if (m->otype == MAT_TRANS2) {
245 greg 2.1 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
246     nd.tspec = nd.trans * m->oargs.farg[7];
247     nd.tdiff = nd.trans - nd.tspec;
248     if (nd.tspec > FTINY) {
249     nd.specfl |= SP_TRAN;
250 greg 2.4 /* check threshold */
251 greg 2.25 if (specthresh >= nd.tspec-FTINY)
252 greg 2.4 nd.specfl |= SP_TBLT;
253 greg 2.10 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
254 greg 2.1 VCOPY(nd.prdir, r->rdir);
255     } else {
256     for (i = 0; i < 3; i++) /* perturb */
257 greg 2.17 nd.prdir[i] = r->rdir[i] - r->pert[i];
258 greg 2.6 if (DOT(nd.prdir, r->ron) < -FTINY)
259     normalize(nd.prdir); /* OK */
260     else
261     VCOPY(nd.prdir, r->rdir);
262 greg 2.1 }
263     }
264     } else
265     nd.tdiff = nd.tspec = nd.trans = 0.0;
266    
267     /* diffuse reflection */
268     nd.rdiff = 1.0 - nd.trans - nd.rspec;
269    
270 greg 2.39 if (r->ro != NULL && isflat(r->ro->otype))
271 greg 2.4 nd.specfl |= SP_FLAT;
272    
273 greg 2.1 getacoords(r, &nd); /* set up coordinates */
274    
275 greg 2.10 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
276 greg 2.1 agaussamp(r, &nd);
277    
278     if (nd.rdiff > FTINY) { /* ambient from this side */
279 greg 2.30 ambient(ctmp, r, nd.pnorm);
280 greg 2.4 if (nd.specfl & SP_RBLT)
281     scalecolor(ctmp, 1.0-nd.trans);
282     else
283     scalecolor(ctmp, nd.rdiff);
284 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by material color */
285     addcolor(r->rcol, ctmp); /* add to returned color */
286     }
287     if (nd.tdiff > FTINY) { /* ambient from other side */
288 greg 2.31 FVECT bnorm;
289    
290 greg 2.1 flipsurface(r);
291 greg 2.31 bnorm[0] = -nd.pnorm[0];
292     bnorm[1] = -nd.pnorm[1];
293     bnorm[2] = -nd.pnorm[2];
294     ambient(ctmp, r, bnorm);
295 greg 2.4 if (nd.specfl & SP_TBLT)
296     scalecolor(ctmp, nd.trans);
297     else
298     scalecolor(ctmp, nd.tdiff);
299 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by color */
300     addcolor(r->rcol, ctmp);
301     flipsurface(r);
302     }
303     /* add direct component */
304     direct(r, diraniso, &nd);
305 greg 2.27
306     return(1);
307 greg 2.1 }
308    
309    
310 greg 2.34 static void
311 schorsch 2.41 getacoords( /* set up coordinate system */
312     RAY *r,
313     register ANISODAT *np
314     )
315 greg 2.1 {
316     register MFUNC *mf;
317     register int i;
318    
319     mf = getfunc(np->mp, 3, 0x7, 1);
320     setfunc(np->mp, r);
321     errno = 0;
322     for (i = 0; i < 3; i++)
323     np->u[i] = evalue(mf->ep[i]);
324 greg 2.37 if (errno == EDOM || errno == ERANGE) {
325 greg 2.1 objerror(np->mp, WARNING, "compute error");
326     np->specfl |= SP_BADU;
327     return;
328     }
329 greg 2.16 if (mf->f != &unitxf)
330     multv3(np->u, np->u, mf->f->xfm);
331 greg 2.1 fcross(np->v, np->pnorm, np->u);
332     if (normalize(np->v) == 0.0) {
333     objerror(np->mp, WARNING, "illegal orientation vector");
334     np->specfl |= SP_BADU;
335     return;
336     }
337     fcross(np->u, np->v, np->pnorm);
338     }
339    
340    
341 greg 2.34 static void
342 schorsch 2.41 agaussamp( /* sample anisotropic gaussian specular */
343     RAY *r,
344     register ANISODAT *np
345     )
346 greg 2.1 {
347     RAY sr;
348     FVECT h;
349     double rv[2];
350     double d, sinp, cosp;
351 greg 2.32 int niter;
352 greg 2.1 register int i;
353     /* compute reflection */
354 greg 2.4 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
355 greg 2.1 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
356     dimlist[ndims++] = (int)np->mp;
357 greg 2.32 for (niter = 0; niter < MAXITER; niter++) {
358     if (niter)
359     d = frandom();
360     else
361     d = urand(ilhash(dimlist,ndims)+samplendx);
362     multisamp(rv, 2, d);
363     d = 2.0*PI * rv[0];
364 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
365     sinp = tsin(d) * np->v_alpha;
366 greg 2.32 d = sqrt(cosp*cosp + sinp*sinp);
367     cosp /= d;
368     sinp /= d;
369     rv[1] = 1.0 - specjitter*rv[1];
370     if (rv[1] <= FTINY)
371     d = 1.0;
372     else
373     d = sqrt(-log(rv[1]) /
374     (cosp*cosp/(np->u_alpha*np->u_alpha) +
375     sinp*sinp/(np->v_alpha*np->v_alpha)));
376     for (i = 0; i < 3; i++)
377     h[i] = np->pnorm[i] +
378     d*(cosp*np->u[i] + sinp*np->v[i]);
379     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
380     for (i = 0; i < 3; i++)
381     sr.rdir[i] = r->rdir[i] + d*h[i];
382     if (DOT(sr.rdir, r->ron) > FTINY) {
383     rayvalue(&sr);
384     multcolor(sr.rcol, np->scolor);
385     addcolor(r->rcol, sr.rcol);
386     break;
387     }
388     }
389 greg 2.1 ndims--;
390     }
391     /* compute transmission */
392 greg 2.7 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
393     rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
394     dimlist[ndims++] = (int)np->mp;
395 greg 2.32 for (niter = 0; niter < MAXITER; niter++) {
396     if (niter)
397     d = frandom();
398     else
399     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
400     multisamp(rv, 2, d);
401     d = 2.0*PI * rv[0];
402 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
403     sinp = tsin(d) * np->v_alpha;
404 greg 2.32 d = sqrt(cosp*cosp + sinp*sinp);
405     cosp /= d;
406     sinp /= d;
407     rv[1] = 1.0 - specjitter*rv[1];
408     if (rv[1] <= FTINY)
409     d = 1.0;
410     else
411     d = sqrt(-log(rv[1]) /
412     (cosp*cosp/(np->u_alpha*np->u_alpha) +
413 gwlarson 2.33 sinp*sinp/(np->v_alpha*np->v_alpha)));
414 greg 2.32 for (i = 0; i < 3; i++)
415     sr.rdir[i] = np->prdir[i] +
416     d*(cosp*np->u[i] + sinp*np->v[i]);
417     if (DOT(sr.rdir, r->ron) < -FTINY) {
418     normalize(sr.rdir); /* OK, normalize */
419     rayvalue(&sr);
420     scalecolor(sr.rcol, np->tspec);
421     multcolor(sr.rcol, np->mcolor); /* modify */
422     addcolor(r->rcol, sr.rcol);
423     break;
424     }
425     }
426 greg 2.7 ndims--;
427     }
428 greg 2.1 }