ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.40
Committed: Thu Aug 28 03:22:16 2003 UTC (20 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.39: +3 -1 lines
Log Message:
Created proper prototypes for function pointers and included missing headers

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.40 static const char RCSid[] = "$Id: aniso.c,v 2.39 2003/03/12 17:26:58 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading functions for anisotropic materials.
6     */
7    
8 greg 2.35 #include "copyright.h"
9 greg 2.34
10 greg 2.1 #include "ray.h"
11 greg 2.40
12     #include "ambient.h"
13 greg 2.1
14     #include "otypes.h"
15    
16     #include "func.h"
17    
18     #include "random.h"
19    
20 greg 2.32 #ifndef MAXITER
21     #define MAXITER 10 /* maximum # specular ray attempts */
22     #endif
23    
24 greg 2.1 /*
25 greg 2.22 * This routine implements the anisotropic Gaussian
26     * model described by Ward in Siggraph `92 article.
27 greg 2.1 * We orient the surface towards the incoming ray, so a single
28     * surface can be used to represent an infinitely thin object.
29     *
30     * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
31     * 4+ ux uy uz funcfile [transform...]
32     * 0
33     * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
34     *
35     * Real arguments for MAT_TRANS2 are:
36     * 8 red grn blu rspec u-rough v-rough trans tspec
37     */
38    
39     /* specularity flags */
40     #define SP_REFL 01 /* has reflected specular component */
41     #define SP_TRAN 02 /* has transmitted specular */
42 greg 2.10 #define SP_FLAT 04 /* reflecting surface is flat */
43     #define SP_RBLT 010 /* reflection below sample threshold */
44     #define SP_TBLT 020 /* transmission below threshold */
45     #define SP_BADU 040 /* bad u direction calculation */
46 greg 2.1
47     typedef struct {
48 greg 2.2 OBJREC *mp; /* material pointer */
49 greg 2.1 RAY *rp; /* ray pointer */
50     short specfl; /* specularity flags, defined above */
51     COLOR mcolor; /* color of this material */
52     COLOR scolor; /* color of specular component */
53 greg 2.6 FVECT vrefl; /* vector in reflected direction */
54 greg 2.1 FVECT prdir; /* vector in transmitted direction */
55     FVECT u, v; /* u and v vectors orienting anisotropy */
56 greg 2.18 double u_alpha; /* u roughness */
57     double v_alpha; /* v roughness */
58 greg 2.1 double rdiff, rspec; /* reflected specular, diffuse */
59     double trans; /* transmissivity */
60     double tdiff, tspec; /* transmitted specular, diffuse */
61     FVECT pnorm; /* perturbed surface normal */
62     double pdot; /* perturbed dot product */
63     } ANISODAT; /* anisotropic material data */
64    
65 greg 2.34 static void getacoords();
66     static void agaussamp();
67    
68 greg 2.1
69 greg 2.34 static void
70 greg 2.1 diraniso(cval, np, ldir, omega) /* compute source contribution */
71     COLOR cval; /* returned coefficient */
72     register ANISODAT *np; /* material data */
73     FVECT ldir; /* light source direction */
74     double omega; /* light source size */
75     {
76     double ldot;
77 greg 2.16 double dtmp, dtmp1, dtmp2;
78 greg 2.1 FVECT h;
79     double au2, av2;
80     COLOR ctmp;
81    
82     setcolor(cval, 0.0, 0.0, 0.0);
83    
84     ldot = DOT(np->pnorm, ldir);
85    
86     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
87     return; /* wrong side */
88    
89     if (ldot > FTINY && np->rdiff > FTINY) {
90     /*
91     * Compute and add diffuse reflected component to returned
92     * color. The diffuse reflected component will always be
93     * modified by the color of the material.
94     */
95     copycolor(ctmp, np->mcolor);
96     dtmp = ldot * omega * np->rdiff / PI;
97     scalecolor(ctmp, dtmp);
98     addcolor(cval, ctmp);
99     }
100 greg 2.10 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
101 greg 2.1 /*
102     * Compute specular reflection coefficient using
103     * anisotropic gaussian distribution model.
104     */
105 greg 2.2 /* add source width if flat */
106     if (np->specfl & SP_FLAT)
107     au2 = av2 = omega/(4.0*PI);
108     else
109     au2 = av2 = 0.0;
110 greg 2.18 au2 += np->u_alpha*np->u_alpha;
111     av2 += np->v_alpha*np->v_alpha;
112 greg 2.1 /* half vector */
113     h[0] = ldir[0] - np->rp->rdir[0];
114     h[1] = ldir[1] - np->rp->rdir[1];
115     h[2] = ldir[2] - np->rp->rdir[2];
116     /* ellipse */
117 greg 2.16 dtmp1 = DOT(np->u, h);
118     dtmp1 *= dtmp1 / au2;
119 greg 2.1 dtmp2 = DOT(np->v, h);
120     dtmp2 *= dtmp2 / av2;
121     /* gaussian */
122 greg 2.23 dtmp = DOT(np->pnorm, h);
123     dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp);
124     dtmp = exp(-dtmp) * (0.25/PI)
125 greg 2.16 * sqrt(ldot/(np->pdot*au2*av2));
126 greg 2.1 /* worth using? */
127     if (dtmp > FTINY) {
128     copycolor(ctmp, np->scolor);
129 greg 2.16 dtmp *= omega;
130 greg 2.1 scalecolor(ctmp, dtmp);
131     addcolor(cval, ctmp);
132     }
133     }
134     if (ldot < -FTINY && np->tdiff > FTINY) {
135     /*
136     * Compute diffuse transmission.
137     */
138     copycolor(ctmp, np->mcolor);
139     dtmp = -ldot * omega * np->tdiff / PI;
140     scalecolor(ctmp, dtmp);
141     addcolor(cval, ctmp);
142     }
143 greg 2.10 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
144 greg 2.1 /*
145     * Compute specular transmission. Specular transmission
146     * is always modified by material color.
147     */
148     /* roughness + source */
149 greg 2.16 au2 = av2 = omega / PI;
150 greg 2.18 au2 += np->u_alpha*np->u_alpha;
151     av2 += np->v_alpha*np->v_alpha;
152 greg 2.16 /* "half vector" */
153     h[0] = ldir[0] - np->prdir[0];
154     h[1] = ldir[1] - np->prdir[1];
155     h[2] = ldir[2] - np->prdir[2];
156 greg 2.19 dtmp = DOT(h,h);
157 greg 2.16 if (dtmp > FTINY*FTINY) {
158 greg 2.19 dtmp1 = DOT(h,np->pnorm);
159     dtmp = 1.0 - dtmp1*dtmp1/dtmp;
160     if (dtmp > FTINY*FTINY) {
161     dtmp1 = DOT(h,np->u);
162 greg 2.23 dtmp1 *= dtmp1 / au2;
163 greg 2.19 dtmp2 = DOT(h,np->v);
164 greg 2.23 dtmp2 *= dtmp2 / av2;
165 greg 2.19 dtmp = (dtmp1 + dtmp2) / dtmp;
166     }
167 greg 2.16 } else
168     dtmp = 0.0;
169 greg 2.1 /* gaussian */
170 greg 2.21 dtmp = exp(-dtmp) * (1.0/PI)
171 greg 2.16 * sqrt(-ldot/(np->pdot*au2*av2));
172 greg 2.1 /* worth using? */
173     if (dtmp > FTINY) {
174     copycolor(ctmp, np->mcolor);
175 greg 2.16 dtmp *= np->tspec * omega;
176 greg 2.1 scalecolor(ctmp, dtmp);
177     addcolor(cval, ctmp);
178     }
179     }
180     }
181    
182    
183 greg 2.34 int
184 greg 2.1 m_aniso(m, r) /* shade ray that hit something anisotropic */
185     register OBJREC *m;
186     register RAY *r;
187     {
188     ANISODAT nd;
189     COLOR ctmp;
190     register int i;
191     /* easy shadow test */
192 greg 2.10 if (r->crtype & SHADOW)
193 greg 2.27 return(1);
194 greg 2.1
195     if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
196     objerror(m, USER, "bad number of real arguments");
197 greg 2.36 /* check for back side */
198     if (r->rod < 0.0) {
199     if (!backvis && m->otype != MAT_TRANS2) {
200     raytrans(r);
201     return(1);
202     }
203     raytexture(r, m->omod);
204     flipsurface(r); /* reorient if backvis */
205     } else
206     raytexture(r, m->omod);
207     /* get material color */
208 greg 2.2 nd.mp = m;
209 greg 2.1 nd.rp = r;
210     setcolor(nd.mcolor, m->oargs.farg[0],
211     m->oargs.farg[1],
212     m->oargs.farg[2]);
213     /* get roughness */
214     nd.specfl = 0;
215 greg 2.18 nd.u_alpha = m->oargs.farg[4];
216     nd.v_alpha = m->oargs.farg[5];
217     if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
218 greg 2.10 objerror(m, USER, "roughness too small");
219 greg 2.36
220 greg 2.1 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
221     if (nd.pdot < .001)
222     nd.pdot = .001; /* non-zero for diraniso() */
223     multcolor(nd.mcolor, r->pcol); /* modify material color */
224     /* get specular component */
225     if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
226     nd.specfl |= SP_REFL;
227     /* compute specular color */
228     if (m->otype == MAT_METAL2)
229     copycolor(nd.scolor, nd.mcolor);
230     else
231     setcolor(nd.scolor, 1.0, 1.0, 1.0);
232     scalecolor(nd.scolor, nd.rspec);
233 greg 2.4 /* check threshold */
234 greg 2.25 if (specthresh >= nd.rspec-FTINY)
235 greg 2.4 nd.specfl |= SP_RBLT;
236 greg 2.6 /* compute refl. direction */
237     for (i = 0; i < 3; i++)
238     nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
239     if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
240     for (i = 0; i < 3; i++) /* safety measure */
241     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
242 greg 2.1 }
243     /* compute transmission */
244 greg 2.16 if (m->otype == MAT_TRANS2) {
245 greg 2.1 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
246     nd.tspec = nd.trans * m->oargs.farg[7];
247     nd.tdiff = nd.trans - nd.tspec;
248     if (nd.tspec > FTINY) {
249     nd.specfl |= SP_TRAN;
250 greg 2.4 /* check threshold */
251 greg 2.25 if (specthresh >= nd.tspec-FTINY)
252 greg 2.4 nd.specfl |= SP_TBLT;
253 greg 2.10 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
254 greg 2.1 VCOPY(nd.prdir, r->rdir);
255     } else {
256     for (i = 0; i < 3; i++) /* perturb */
257 greg 2.17 nd.prdir[i] = r->rdir[i] - r->pert[i];
258 greg 2.6 if (DOT(nd.prdir, r->ron) < -FTINY)
259     normalize(nd.prdir); /* OK */
260     else
261     VCOPY(nd.prdir, r->rdir);
262 greg 2.1 }
263     }
264     } else
265     nd.tdiff = nd.tspec = nd.trans = 0.0;
266    
267     /* diffuse reflection */
268     nd.rdiff = 1.0 - nd.trans - nd.rspec;
269    
270 greg 2.39 if (r->ro != NULL && isflat(r->ro->otype))
271 greg 2.4 nd.specfl |= SP_FLAT;
272    
273 greg 2.1 getacoords(r, &nd); /* set up coordinates */
274    
275 greg 2.10 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
276 greg 2.1 agaussamp(r, &nd);
277    
278     if (nd.rdiff > FTINY) { /* ambient from this side */
279 greg 2.30 ambient(ctmp, r, nd.pnorm);
280 greg 2.4 if (nd.specfl & SP_RBLT)
281     scalecolor(ctmp, 1.0-nd.trans);
282     else
283     scalecolor(ctmp, nd.rdiff);
284 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by material color */
285     addcolor(r->rcol, ctmp); /* add to returned color */
286     }
287     if (nd.tdiff > FTINY) { /* ambient from other side */
288 greg 2.31 FVECT bnorm;
289    
290 greg 2.1 flipsurface(r);
291 greg 2.31 bnorm[0] = -nd.pnorm[0];
292     bnorm[1] = -nd.pnorm[1];
293     bnorm[2] = -nd.pnorm[2];
294     ambient(ctmp, r, bnorm);
295 greg 2.4 if (nd.specfl & SP_TBLT)
296     scalecolor(ctmp, nd.trans);
297     else
298     scalecolor(ctmp, nd.tdiff);
299 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by color */
300     addcolor(r->rcol, ctmp);
301     flipsurface(r);
302     }
303     /* add direct component */
304     direct(r, diraniso, &nd);
305 greg 2.27
306     return(1);
307 greg 2.1 }
308    
309    
310 greg 2.34 static void
311 greg 2.1 getacoords(r, np) /* set up coordinate system */
312     RAY *r;
313     register ANISODAT *np;
314     {
315     register MFUNC *mf;
316     register int i;
317    
318     mf = getfunc(np->mp, 3, 0x7, 1);
319     setfunc(np->mp, r);
320     errno = 0;
321     for (i = 0; i < 3; i++)
322     np->u[i] = evalue(mf->ep[i]);
323 greg 2.37 if (errno == EDOM || errno == ERANGE) {
324 greg 2.1 objerror(np->mp, WARNING, "compute error");
325     np->specfl |= SP_BADU;
326     return;
327     }
328 greg 2.16 if (mf->f != &unitxf)
329     multv3(np->u, np->u, mf->f->xfm);
330 greg 2.1 fcross(np->v, np->pnorm, np->u);
331     if (normalize(np->v) == 0.0) {
332     objerror(np->mp, WARNING, "illegal orientation vector");
333     np->specfl |= SP_BADU;
334     return;
335     }
336     fcross(np->u, np->v, np->pnorm);
337     }
338    
339    
340 greg 2.34 static void
341 greg 2.1 agaussamp(r, np) /* sample anisotropic gaussian specular */
342     RAY *r;
343     register ANISODAT *np;
344     {
345     RAY sr;
346     FVECT h;
347     double rv[2];
348     double d, sinp, cosp;
349 greg 2.32 int niter;
350 greg 2.1 register int i;
351     /* compute reflection */
352 greg 2.4 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
353 greg 2.1 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
354     dimlist[ndims++] = (int)np->mp;
355 greg 2.32 for (niter = 0; niter < MAXITER; niter++) {
356     if (niter)
357     d = frandom();
358     else
359     d = urand(ilhash(dimlist,ndims)+samplendx);
360     multisamp(rv, 2, d);
361     d = 2.0*PI * rv[0];
362 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
363     sinp = tsin(d) * np->v_alpha;
364 greg 2.32 d = sqrt(cosp*cosp + sinp*sinp);
365     cosp /= d;
366     sinp /= d;
367     rv[1] = 1.0 - specjitter*rv[1];
368     if (rv[1] <= FTINY)
369     d = 1.0;
370     else
371     d = sqrt(-log(rv[1]) /
372     (cosp*cosp/(np->u_alpha*np->u_alpha) +
373     sinp*sinp/(np->v_alpha*np->v_alpha)));
374     for (i = 0; i < 3; i++)
375     h[i] = np->pnorm[i] +
376     d*(cosp*np->u[i] + sinp*np->v[i]);
377     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
378     for (i = 0; i < 3; i++)
379     sr.rdir[i] = r->rdir[i] + d*h[i];
380     if (DOT(sr.rdir, r->ron) > FTINY) {
381     rayvalue(&sr);
382     multcolor(sr.rcol, np->scolor);
383     addcolor(r->rcol, sr.rcol);
384     break;
385     }
386     }
387 greg 2.1 ndims--;
388     }
389     /* compute transmission */
390 greg 2.7 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
391     rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
392     dimlist[ndims++] = (int)np->mp;
393 greg 2.32 for (niter = 0; niter < MAXITER; niter++) {
394     if (niter)
395     d = frandom();
396     else
397     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
398     multisamp(rv, 2, d);
399     d = 2.0*PI * rv[0];
400 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
401     sinp = tsin(d) * np->v_alpha;
402 greg 2.32 d = sqrt(cosp*cosp + sinp*sinp);
403     cosp /= d;
404     sinp /= d;
405     rv[1] = 1.0 - specjitter*rv[1];
406     if (rv[1] <= FTINY)
407     d = 1.0;
408     else
409     d = sqrt(-log(rv[1]) /
410     (cosp*cosp/(np->u_alpha*np->u_alpha) +
411 gwlarson 2.33 sinp*sinp/(np->v_alpha*np->v_alpha)));
412 greg 2.32 for (i = 0; i < 3; i++)
413     sr.rdir[i] = np->prdir[i] +
414     d*(cosp*np->u[i] + sinp*np->v[i]);
415     if (DOT(sr.rdir, r->ron) < -FTINY) {
416     normalize(sr.rdir); /* OK, normalize */
417     rayvalue(&sr);
418     scalecolor(sr.rcol, np->tspec);
419     multcolor(sr.rcol, np->mcolor); /* modify */
420     addcolor(r->rcol, sr.rcol);
421     break;
422     }
423     }
424 greg 2.7 ndims--;
425     }
426 greg 2.1 }