ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.34
Committed: Sat Feb 22 02:07:28 2003 UTC (21 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.33: +65 -13 lines
Log Message:
Changes and check-in for 3.5 release
Includes new source files and modifications not recorded for many years
See ray/doc/notes/ReleaseNotes for notes between 3.1 and 3.5 release

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.34 static const char RCSid[] = "$Id$";
3 greg 2.1 #endif
4     /*
5     * Shading functions for anisotropic materials.
6     */
7    
8 greg 2.34 /* ====================================================================
9     * The Radiance Software License, Version 1.0
10     *
11     * Copyright (c) 1990 - 2002 The Regents of the University of California,
12     * through Lawrence Berkeley National Laboratory. All rights reserved.
13     *
14     * Redistribution and use in source and binary forms, with or without
15     * modification, are permitted provided that the following conditions
16     * are met:
17     *
18     * 1. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 2. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in
23     * the documentation and/or other materials provided with the
24     * distribution.
25     *
26     * 3. The end-user documentation included with the redistribution,
27     * if any, must include the following acknowledgment:
28     * "This product includes Radiance software
29     * (http://radsite.lbl.gov/)
30     * developed by the Lawrence Berkeley National Laboratory
31     * (http://www.lbl.gov/)."
32     * Alternately, this acknowledgment may appear in the software itself,
33     * if and wherever such third-party acknowledgments normally appear.
34     *
35     * 4. The names "Radiance," "Lawrence Berkeley National Laboratory"
36     * and "The Regents of the University of California" must
37     * not be used to endorse or promote products derived from this
38     * software without prior written permission. For written
39     * permission, please contact [email protected].
40     *
41     * 5. Products derived from this software may not be called "Radiance",
42     * nor may "Radiance" appear in their name, without prior written
43     * permission of Lawrence Berkeley National Laboratory.
44     *
45     * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
46     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
47     * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
48     * DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
49     * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
50     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
51     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
52     * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
53     * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
54     * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
55     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56     * SUCH DAMAGE.
57     * ====================================================================
58     *
59     * This software consists of voluntary contributions made by many
60     * individuals on behalf of Lawrence Berkeley National Laboratory. For more
61     * information on Lawrence Berkeley National Laboratory, please see
62     * <http://www.lbl.gov/>.
63     */
64    
65 greg 2.1 #include "ray.h"
66    
67     #include "otypes.h"
68    
69     #include "func.h"
70    
71     #include "random.h"
72    
73 greg 2.32 #ifndef MAXITER
74     #define MAXITER 10 /* maximum # specular ray attempts */
75     #endif
76    
77 greg 2.1 /*
78 greg 2.22 * This routine implements the anisotropic Gaussian
79     * model described by Ward in Siggraph `92 article.
80 greg 2.1 * We orient the surface towards the incoming ray, so a single
81     * surface can be used to represent an infinitely thin object.
82     *
83     * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
84     * 4+ ux uy uz funcfile [transform...]
85     * 0
86     * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
87     *
88     * Real arguments for MAT_TRANS2 are:
89     * 8 red grn blu rspec u-rough v-rough trans tspec
90     */
91    
92     /* specularity flags */
93     #define SP_REFL 01 /* has reflected specular component */
94     #define SP_TRAN 02 /* has transmitted specular */
95 greg 2.10 #define SP_FLAT 04 /* reflecting surface is flat */
96     #define SP_RBLT 010 /* reflection below sample threshold */
97     #define SP_TBLT 020 /* transmission below threshold */
98     #define SP_BADU 040 /* bad u direction calculation */
99 greg 2.1
100     typedef struct {
101 greg 2.2 OBJREC *mp; /* material pointer */
102 greg 2.1 RAY *rp; /* ray pointer */
103     short specfl; /* specularity flags, defined above */
104     COLOR mcolor; /* color of this material */
105     COLOR scolor; /* color of specular component */
106 greg 2.6 FVECT vrefl; /* vector in reflected direction */
107 greg 2.1 FVECT prdir; /* vector in transmitted direction */
108     FVECT u, v; /* u and v vectors orienting anisotropy */
109 greg 2.18 double u_alpha; /* u roughness */
110     double v_alpha; /* v roughness */
111 greg 2.1 double rdiff, rspec; /* reflected specular, diffuse */
112     double trans; /* transmissivity */
113     double tdiff, tspec; /* transmitted specular, diffuse */
114     FVECT pnorm; /* perturbed surface normal */
115     double pdot; /* perturbed dot product */
116     } ANISODAT; /* anisotropic material data */
117    
118 greg 2.34 static void getacoords();
119     static void agaussamp();
120    
121 greg 2.1
122 greg 2.34 static void
123 greg 2.1 diraniso(cval, np, ldir, omega) /* compute source contribution */
124     COLOR cval; /* returned coefficient */
125     register ANISODAT *np; /* material data */
126     FVECT ldir; /* light source direction */
127     double omega; /* light source size */
128     {
129     double ldot;
130 greg 2.16 double dtmp, dtmp1, dtmp2;
131 greg 2.1 FVECT h;
132     double au2, av2;
133     COLOR ctmp;
134    
135     setcolor(cval, 0.0, 0.0, 0.0);
136    
137     ldot = DOT(np->pnorm, ldir);
138    
139     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
140     return; /* wrong side */
141    
142     if (ldot > FTINY && np->rdiff > FTINY) {
143     /*
144     * Compute and add diffuse reflected component to returned
145     * color. The diffuse reflected component will always be
146     * modified by the color of the material.
147     */
148     copycolor(ctmp, np->mcolor);
149     dtmp = ldot * omega * np->rdiff / PI;
150     scalecolor(ctmp, dtmp);
151     addcolor(cval, ctmp);
152     }
153 greg 2.10 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
154 greg 2.1 /*
155     * Compute specular reflection coefficient using
156     * anisotropic gaussian distribution model.
157     */
158 greg 2.2 /* add source width if flat */
159     if (np->specfl & SP_FLAT)
160     au2 = av2 = omega/(4.0*PI);
161     else
162     au2 = av2 = 0.0;
163 greg 2.18 au2 += np->u_alpha*np->u_alpha;
164     av2 += np->v_alpha*np->v_alpha;
165 greg 2.1 /* half vector */
166     h[0] = ldir[0] - np->rp->rdir[0];
167     h[1] = ldir[1] - np->rp->rdir[1];
168     h[2] = ldir[2] - np->rp->rdir[2];
169     /* ellipse */
170 greg 2.16 dtmp1 = DOT(np->u, h);
171     dtmp1 *= dtmp1 / au2;
172 greg 2.1 dtmp2 = DOT(np->v, h);
173     dtmp2 *= dtmp2 / av2;
174     /* gaussian */
175 greg 2.23 dtmp = DOT(np->pnorm, h);
176     dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp);
177     dtmp = exp(-dtmp) * (0.25/PI)
178 greg 2.16 * sqrt(ldot/(np->pdot*au2*av2));
179 greg 2.1 /* worth using? */
180     if (dtmp > FTINY) {
181     copycolor(ctmp, np->scolor);
182 greg 2.16 dtmp *= omega;
183 greg 2.1 scalecolor(ctmp, dtmp);
184     addcolor(cval, ctmp);
185     }
186     }
187     if (ldot < -FTINY && np->tdiff > FTINY) {
188     /*
189     * Compute diffuse transmission.
190     */
191     copycolor(ctmp, np->mcolor);
192     dtmp = -ldot * omega * np->tdiff / PI;
193     scalecolor(ctmp, dtmp);
194     addcolor(cval, ctmp);
195     }
196 greg 2.10 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
197 greg 2.1 /*
198     * Compute specular transmission. Specular transmission
199     * is always modified by material color.
200     */
201     /* roughness + source */
202 greg 2.16 au2 = av2 = omega / PI;
203 greg 2.18 au2 += np->u_alpha*np->u_alpha;
204     av2 += np->v_alpha*np->v_alpha;
205 greg 2.16 /* "half vector" */
206     h[0] = ldir[0] - np->prdir[0];
207     h[1] = ldir[1] - np->prdir[1];
208     h[2] = ldir[2] - np->prdir[2];
209 greg 2.19 dtmp = DOT(h,h);
210 greg 2.16 if (dtmp > FTINY*FTINY) {
211 greg 2.19 dtmp1 = DOT(h,np->pnorm);
212     dtmp = 1.0 - dtmp1*dtmp1/dtmp;
213     if (dtmp > FTINY*FTINY) {
214     dtmp1 = DOT(h,np->u);
215 greg 2.23 dtmp1 *= dtmp1 / au2;
216 greg 2.19 dtmp2 = DOT(h,np->v);
217 greg 2.23 dtmp2 *= dtmp2 / av2;
218 greg 2.19 dtmp = (dtmp1 + dtmp2) / dtmp;
219     }
220 greg 2.16 } else
221     dtmp = 0.0;
222 greg 2.1 /* gaussian */
223 greg 2.21 dtmp = exp(-dtmp) * (1.0/PI)
224 greg 2.16 * sqrt(-ldot/(np->pdot*au2*av2));
225 greg 2.1 /* worth using? */
226     if (dtmp > FTINY) {
227     copycolor(ctmp, np->mcolor);
228 greg 2.16 dtmp *= np->tspec * omega;
229 greg 2.1 scalecolor(ctmp, dtmp);
230     addcolor(cval, ctmp);
231     }
232     }
233     }
234    
235    
236 greg 2.34 int
237 greg 2.1 m_aniso(m, r) /* shade ray that hit something anisotropic */
238     register OBJREC *m;
239     register RAY *r;
240     {
241     ANISODAT nd;
242     COLOR ctmp;
243     register int i;
244     /* easy shadow test */
245 greg 2.10 if (r->crtype & SHADOW)
246 greg 2.27 return(1);
247 greg 2.1
248     if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
249     objerror(m, USER, "bad number of real arguments");
250 greg 2.2 nd.mp = m;
251 greg 2.1 nd.rp = r;
252     /* get material color */
253     setcolor(nd.mcolor, m->oargs.farg[0],
254     m->oargs.farg[1],
255     m->oargs.farg[2]);
256     /* get roughness */
257     nd.specfl = 0;
258 greg 2.18 nd.u_alpha = m->oargs.farg[4];
259     nd.v_alpha = m->oargs.farg[5];
260     if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
261 greg 2.10 objerror(m, USER, "roughness too small");
262 greg 2.28 /* check for back side */
263     if (r->rod < 0.0) {
264     if (!backvis && m->otype != MAT_TRANS2) {
265     raytrans(r);
266     return(1);
267     }
268     flipsurface(r); /* reorient if backvis */
269     }
270 greg 2.1 /* get modifiers */
271     raytexture(r, m->omod);
272     nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
273     if (nd.pdot < .001)
274     nd.pdot = .001; /* non-zero for diraniso() */
275     multcolor(nd.mcolor, r->pcol); /* modify material color */
276     /* get specular component */
277     if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
278     nd.specfl |= SP_REFL;
279     /* compute specular color */
280     if (m->otype == MAT_METAL2)
281     copycolor(nd.scolor, nd.mcolor);
282     else
283     setcolor(nd.scolor, 1.0, 1.0, 1.0);
284     scalecolor(nd.scolor, nd.rspec);
285 greg 2.4 /* check threshold */
286 greg 2.25 if (specthresh >= nd.rspec-FTINY)
287 greg 2.4 nd.specfl |= SP_RBLT;
288 greg 2.6 /* compute refl. direction */
289     for (i = 0; i < 3; i++)
290     nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
291     if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
292     for (i = 0; i < 3; i++) /* safety measure */
293     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
294 greg 2.1 }
295     /* compute transmission */
296 greg 2.16 if (m->otype == MAT_TRANS2) {
297 greg 2.1 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
298     nd.tspec = nd.trans * m->oargs.farg[7];
299     nd.tdiff = nd.trans - nd.tspec;
300     if (nd.tspec > FTINY) {
301     nd.specfl |= SP_TRAN;
302 greg 2.4 /* check threshold */
303 greg 2.25 if (specthresh >= nd.tspec-FTINY)
304 greg 2.4 nd.specfl |= SP_TBLT;
305 greg 2.10 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
306 greg 2.1 VCOPY(nd.prdir, r->rdir);
307     } else {
308     for (i = 0; i < 3; i++) /* perturb */
309 greg 2.17 nd.prdir[i] = r->rdir[i] - r->pert[i];
310 greg 2.6 if (DOT(nd.prdir, r->ron) < -FTINY)
311     normalize(nd.prdir); /* OK */
312     else
313     VCOPY(nd.prdir, r->rdir);
314 greg 2.1 }
315     }
316     } else
317     nd.tdiff = nd.tspec = nd.trans = 0.0;
318    
319     /* diffuse reflection */
320     nd.rdiff = 1.0 - nd.trans - nd.rspec;
321    
322 greg 2.29 if (r->ro != NULL && isflat(r->ro->otype))
323 greg 2.4 nd.specfl |= SP_FLAT;
324    
325 greg 2.1 getacoords(r, &nd); /* set up coordinates */
326    
327 greg 2.10 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
328 greg 2.1 agaussamp(r, &nd);
329    
330     if (nd.rdiff > FTINY) { /* ambient from this side */
331 greg 2.30 ambient(ctmp, r, nd.pnorm);
332 greg 2.4 if (nd.specfl & SP_RBLT)
333     scalecolor(ctmp, 1.0-nd.trans);
334     else
335     scalecolor(ctmp, nd.rdiff);
336 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by material color */
337     addcolor(r->rcol, ctmp); /* add to returned color */
338     }
339     if (nd.tdiff > FTINY) { /* ambient from other side */
340 greg 2.31 FVECT bnorm;
341    
342 greg 2.1 flipsurface(r);
343 greg 2.31 bnorm[0] = -nd.pnorm[0];
344     bnorm[1] = -nd.pnorm[1];
345     bnorm[2] = -nd.pnorm[2];
346     ambient(ctmp, r, bnorm);
347 greg 2.4 if (nd.specfl & SP_TBLT)
348     scalecolor(ctmp, nd.trans);
349     else
350     scalecolor(ctmp, nd.tdiff);
351 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by color */
352     addcolor(r->rcol, ctmp);
353     flipsurface(r);
354     }
355     /* add direct component */
356     direct(r, diraniso, &nd);
357 greg 2.27
358     return(1);
359 greg 2.1 }
360    
361    
362 greg 2.34 static void
363 greg 2.1 getacoords(r, np) /* set up coordinate system */
364     RAY *r;
365     register ANISODAT *np;
366     {
367     register MFUNC *mf;
368     register int i;
369    
370     mf = getfunc(np->mp, 3, 0x7, 1);
371     setfunc(np->mp, r);
372     errno = 0;
373     for (i = 0; i < 3; i++)
374     np->u[i] = evalue(mf->ep[i]);
375     if (errno) {
376     objerror(np->mp, WARNING, "compute error");
377     np->specfl |= SP_BADU;
378     return;
379     }
380 greg 2.16 if (mf->f != &unitxf)
381     multv3(np->u, np->u, mf->f->xfm);
382 greg 2.1 fcross(np->v, np->pnorm, np->u);
383     if (normalize(np->v) == 0.0) {
384     objerror(np->mp, WARNING, "illegal orientation vector");
385     np->specfl |= SP_BADU;
386     return;
387     }
388     fcross(np->u, np->v, np->pnorm);
389     }
390    
391    
392 greg 2.34 static void
393 greg 2.1 agaussamp(r, np) /* sample anisotropic gaussian specular */
394     RAY *r;
395     register ANISODAT *np;
396     {
397     RAY sr;
398     FVECT h;
399     double rv[2];
400     double d, sinp, cosp;
401 greg 2.32 int niter;
402 greg 2.1 register int i;
403     /* compute reflection */
404 greg 2.4 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
405 greg 2.1 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
406     dimlist[ndims++] = (int)np->mp;
407 greg 2.32 for (niter = 0; niter < MAXITER; niter++) {
408     if (niter)
409     d = frandom();
410     else
411     d = urand(ilhash(dimlist,ndims)+samplendx);
412     multisamp(rv, 2, d);
413     d = 2.0*PI * rv[0];
414 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
415     sinp = tsin(d) * np->v_alpha;
416 greg 2.32 d = sqrt(cosp*cosp + sinp*sinp);
417     cosp /= d;
418     sinp /= d;
419     rv[1] = 1.0 - specjitter*rv[1];
420     if (rv[1] <= FTINY)
421     d = 1.0;
422     else
423     d = sqrt(-log(rv[1]) /
424     (cosp*cosp/(np->u_alpha*np->u_alpha) +
425     sinp*sinp/(np->v_alpha*np->v_alpha)));
426     for (i = 0; i < 3; i++)
427     h[i] = np->pnorm[i] +
428     d*(cosp*np->u[i] + sinp*np->v[i]);
429     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
430     for (i = 0; i < 3; i++)
431     sr.rdir[i] = r->rdir[i] + d*h[i];
432     if (DOT(sr.rdir, r->ron) > FTINY) {
433     rayvalue(&sr);
434     multcolor(sr.rcol, np->scolor);
435     addcolor(r->rcol, sr.rcol);
436     break;
437     }
438     }
439 greg 2.1 ndims--;
440     }
441     /* compute transmission */
442 greg 2.7 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
443     rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
444     dimlist[ndims++] = (int)np->mp;
445 greg 2.32 for (niter = 0; niter < MAXITER; niter++) {
446     if (niter)
447     d = frandom();
448     else
449     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
450     multisamp(rv, 2, d);
451     d = 2.0*PI * rv[0];
452 gwlarson 2.33 cosp = tcos(d) * np->u_alpha;
453     sinp = tsin(d) * np->v_alpha;
454 greg 2.32 d = sqrt(cosp*cosp + sinp*sinp);
455     cosp /= d;
456     sinp /= d;
457     rv[1] = 1.0 - specjitter*rv[1];
458     if (rv[1] <= FTINY)
459     d = 1.0;
460     else
461     d = sqrt(-log(rv[1]) /
462     (cosp*cosp/(np->u_alpha*np->u_alpha) +
463 gwlarson 2.33 sinp*sinp/(np->v_alpha*np->v_alpha)));
464 greg 2.32 for (i = 0; i < 3; i++)
465     sr.rdir[i] = np->prdir[i] +
466     d*(cosp*np->u[i] + sinp*np->v[i]);
467     if (DOT(sr.rdir, r->ron) < -FTINY) {
468     normalize(sr.rdir); /* OK, normalize */
469     rayvalue(&sr);
470     scalecolor(sr.rcol, np->tspec);
471     multcolor(sr.rcol, np->mcolor); /* modify */
472     addcolor(r->rcol, sr.rcol);
473     break;
474     }
475     }
476 greg 2.7 ndims--;
477     }
478 greg 2.1 }