ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.30
Committed: Mon Nov 6 12:03:20 1995 UTC (28 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.29: +2 -2 lines
Log Message:
added texturing to ambient value computation using extambient()

File Contents

# User Rev Content
1 greg 2.1 /* Copyright (c) 1992 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Shading functions for anisotropic materials.
9     */
10    
11     #include "ray.h"
12    
13     #include "otypes.h"
14    
15     #include "func.h"
16    
17     #include "random.h"
18    
19 greg 2.4 extern double specthresh; /* specular sampling threshold */
20     extern double specjitter; /* specular sampling jitter */
21    
22 greg 2.28 extern int backvis; /* back faces visible? */
23    
24 greg 2.26 static agaussamp(), getacoords();
25 greg 2.24
26 greg 2.1 /*
27 greg 2.22 * This routine implements the anisotropic Gaussian
28     * model described by Ward in Siggraph `92 article.
29 greg 2.1 * We orient the surface towards the incoming ray, so a single
30     * surface can be used to represent an infinitely thin object.
31     *
32     * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
33     * 4+ ux uy uz funcfile [transform...]
34     * 0
35     * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
36     *
37     * Real arguments for MAT_TRANS2 are:
38     * 8 red grn blu rspec u-rough v-rough trans tspec
39     */
40    
41     /* specularity flags */
42     #define SP_REFL 01 /* has reflected specular component */
43     #define SP_TRAN 02 /* has transmitted specular */
44 greg 2.10 #define SP_FLAT 04 /* reflecting surface is flat */
45     #define SP_RBLT 010 /* reflection below sample threshold */
46     #define SP_TBLT 020 /* transmission below threshold */
47     #define SP_BADU 040 /* bad u direction calculation */
48 greg 2.1
49     typedef struct {
50 greg 2.2 OBJREC *mp; /* material pointer */
51 greg 2.1 RAY *rp; /* ray pointer */
52     short specfl; /* specularity flags, defined above */
53     COLOR mcolor; /* color of this material */
54     COLOR scolor; /* color of specular component */
55 greg 2.6 FVECT vrefl; /* vector in reflected direction */
56 greg 2.1 FVECT prdir; /* vector in transmitted direction */
57     FVECT u, v; /* u and v vectors orienting anisotropy */
58 greg 2.18 double u_alpha; /* u roughness */
59     double v_alpha; /* v roughness */
60 greg 2.1 double rdiff, rspec; /* reflected specular, diffuse */
61     double trans; /* transmissivity */
62     double tdiff, tspec; /* transmitted specular, diffuse */
63     FVECT pnorm; /* perturbed surface normal */
64     double pdot; /* perturbed dot product */
65     } ANISODAT; /* anisotropic material data */
66    
67    
68     diraniso(cval, np, ldir, omega) /* compute source contribution */
69     COLOR cval; /* returned coefficient */
70     register ANISODAT *np; /* material data */
71     FVECT ldir; /* light source direction */
72     double omega; /* light source size */
73     {
74     double ldot;
75 greg 2.16 double dtmp, dtmp1, dtmp2;
76 greg 2.1 FVECT h;
77     double au2, av2;
78     COLOR ctmp;
79    
80     setcolor(cval, 0.0, 0.0, 0.0);
81    
82     ldot = DOT(np->pnorm, ldir);
83    
84     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
85     return; /* wrong side */
86    
87     if (ldot > FTINY && np->rdiff > FTINY) {
88     /*
89     * Compute and add diffuse reflected component to returned
90     * color. The diffuse reflected component will always be
91     * modified by the color of the material.
92     */
93     copycolor(ctmp, np->mcolor);
94     dtmp = ldot * omega * np->rdiff / PI;
95     scalecolor(ctmp, dtmp);
96     addcolor(cval, ctmp);
97     }
98 greg 2.10 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
99 greg 2.1 /*
100     * Compute specular reflection coefficient using
101     * anisotropic gaussian distribution model.
102     */
103 greg 2.2 /* add source width if flat */
104     if (np->specfl & SP_FLAT)
105     au2 = av2 = omega/(4.0*PI);
106     else
107     au2 = av2 = 0.0;
108 greg 2.18 au2 += np->u_alpha*np->u_alpha;
109     av2 += np->v_alpha*np->v_alpha;
110 greg 2.1 /* half vector */
111     h[0] = ldir[0] - np->rp->rdir[0];
112     h[1] = ldir[1] - np->rp->rdir[1];
113     h[2] = ldir[2] - np->rp->rdir[2];
114     /* ellipse */
115 greg 2.16 dtmp1 = DOT(np->u, h);
116     dtmp1 *= dtmp1 / au2;
117 greg 2.1 dtmp2 = DOT(np->v, h);
118     dtmp2 *= dtmp2 / av2;
119     /* gaussian */
120 greg 2.23 dtmp = DOT(np->pnorm, h);
121     dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp);
122     dtmp = exp(-dtmp) * (0.25/PI)
123 greg 2.16 * sqrt(ldot/(np->pdot*au2*av2));
124 greg 2.1 /* worth using? */
125     if (dtmp > FTINY) {
126     copycolor(ctmp, np->scolor);
127 greg 2.16 dtmp *= omega;
128 greg 2.1 scalecolor(ctmp, dtmp);
129     addcolor(cval, ctmp);
130     }
131     }
132     if (ldot < -FTINY && np->tdiff > FTINY) {
133     /*
134     * Compute diffuse transmission.
135     */
136     copycolor(ctmp, np->mcolor);
137     dtmp = -ldot * omega * np->tdiff / PI;
138     scalecolor(ctmp, dtmp);
139     addcolor(cval, ctmp);
140     }
141 greg 2.10 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
142 greg 2.1 /*
143     * Compute specular transmission. Specular transmission
144     * is always modified by material color.
145     */
146     /* roughness + source */
147 greg 2.16 au2 = av2 = omega / PI;
148 greg 2.18 au2 += np->u_alpha*np->u_alpha;
149     av2 += np->v_alpha*np->v_alpha;
150 greg 2.16 /* "half vector" */
151     h[0] = ldir[0] - np->prdir[0];
152     h[1] = ldir[1] - np->prdir[1];
153     h[2] = ldir[2] - np->prdir[2];
154 greg 2.19 dtmp = DOT(h,h);
155 greg 2.16 if (dtmp > FTINY*FTINY) {
156 greg 2.19 dtmp1 = DOT(h,np->pnorm);
157     dtmp = 1.0 - dtmp1*dtmp1/dtmp;
158     if (dtmp > FTINY*FTINY) {
159     dtmp1 = DOT(h,np->u);
160 greg 2.23 dtmp1 *= dtmp1 / au2;
161 greg 2.19 dtmp2 = DOT(h,np->v);
162 greg 2.23 dtmp2 *= dtmp2 / av2;
163 greg 2.19 dtmp = (dtmp1 + dtmp2) / dtmp;
164     }
165 greg 2.16 } else
166     dtmp = 0.0;
167 greg 2.1 /* gaussian */
168 greg 2.21 dtmp = exp(-dtmp) * (1.0/PI)
169 greg 2.16 * sqrt(-ldot/(np->pdot*au2*av2));
170 greg 2.1 /* worth using? */
171     if (dtmp > FTINY) {
172     copycolor(ctmp, np->mcolor);
173 greg 2.16 dtmp *= np->tspec * omega;
174 greg 2.1 scalecolor(ctmp, dtmp);
175     addcolor(cval, ctmp);
176     }
177     }
178     }
179    
180    
181     m_aniso(m, r) /* shade ray that hit something anisotropic */
182     register OBJREC *m;
183     register RAY *r;
184     {
185     ANISODAT nd;
186     COLOR ctmp;
187     register int i;
188     /* easy shadow test */
189 greg 2.10 if (r->crtype & SHADOW)
190 greg 2.27 return(1);
191 greg 2.1
192     if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
193     objerror(m, USER, "bad number of real arguments");
194 greg 2.2 nd.mp = m;
195 greg 2.1 nd.rp = r;
196     /* get material color */
197     setcolor(nd.mcolor, m->oargs.farg[0],
198     m->oargs.farg[1],
199     m->oargs.farg[2]);
200     /* get roughness */
201     nd.specfl = 0;
202 greg 2.18 nd.u_alpha = m->oargs.farg[4];
203     nd.v_alpha = m->oargs.farg[5];
204     if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
205 greg 2.10 objerror(m, USER, "roughness too small");
206 greg 2.28 /* check for back side */
207     if (r->rod < 0.0) {
208     if (!backvis && m->otype != MAT_TRANS2) {
209     raytrans(r);
210     return(1);
211     }
212     flipsurface(r); /* reorient if backvis */
213     }
214 greg 2.1 /* get modifiers */
215     raytexture(r, m->omod);
216     nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
217     if (nd.pdot < .001)
218     nd.pdot = .001; /* non-zero for diraniso() */
219     multcolor(nd.mcolor, r->pcol); /* modify material color */
220     /* get specular component */
221     if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
222     nd.specfl |= SP_REFL;
223     /* compute specular color */
224     if (m->otype == MAT_METAL2)
225     copycolor(nd.scolor, nd.mcolor);
226     else
227     setcolor(nd.scolor, 1.0, 1.0, 1.0);
228     scalecolor(nd.scolor, nd.rspec);
229 greg 2.4 /* check threshold */
230 greg 2.25 if (specthresh >= nd.rspec-FTINY)
231 greg 2.4 nd.specfl |= SP_RBLT;
232 greg 2.6 /* compute refl. direction */
233     for (i = 0; i < 3; i++)
234     nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
235     if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
236     for (i = 0; i < 3; i++) /* safety measure */
237     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
238 greg 2.1 }
239     /* compute transmission */
240 greg 2.16 if (m->otype == MAT_TRANS2) {
241 greg 2.1 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
242     nd.tspec = nd.trans * m->oargs.farg[7];
243     nd.tdiff = nd.trans - nd.tspec;
244     if (nd.tspec > FTINY) {
245     nd.specfl |= SP_TRAN;
246 greg 2.4 /* check threshold */
247 greg 2.25 if (specthresh >= nd.tspec-FTINY)
248 greg 2.4 nd.specfl |= SP_TBLT;
249 greg 2.10 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
250 greg 2.1 VCOPY(nd.prdir, r->rdir);
251     } else {
252     for (i = 0; i < 3; i++) /* perturb */
253 greg 2.17 nd.prdir[i] = r->rdir[i] - r->pert[i];
254 greg 2.6 if (DOT(nd.prdir, r->ron) < -FTINY)
255     normalize(nd.prdir); /* OK */
256     else
257     VCOPY(nd.prdir, r->rdir);
258 greg 2.1 }
259     }
260     } else
261     nd.tdiff = nd.tspec = nd.trans = 0.0;
262    
263     /* diffuse reflection */
264     nd.rdiff = 1.0 - nd.trans - nd.rspec;
265    
266 greg 2.29 if (r->ro != NULL && isflat(r->ro->otype))
267 greg 2.4 nd.specfl |= SP_FLAT;
268    
269 greg 2.1 getacoords(r, &nd); /* set up coordinates */
270    
271 greg 2.10 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
272 greg 2.1 agaussamp(r, &nd);
273    
274     if (nd.rdiff > FTINY) { /* ambient from this side */
275 greg 2.30 ambient(ctmp, r, nd.pnorm);
276 greg 2.4 if (nd.specfl & SP_RBLT)
277     scalecolor(ctmp, 1.0-nd.trans);
278     else
279     scalecolor(ctmp, nd.rdiff);
280 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by material color */
281     addcolor(r->rcol, ctmp); /* add to returned color */
282     }
283     if (nd.tdiff > FTINY) { /* ambient from other side */
284     flipsurface(r);
285 greg 2.30 ambient(ctmp, r, nd.pnorm);
286 greg 2.4 if (nd.specfl & SP_TBLT)
287     scalecolor(ctmp, nd.trans);
288     else
289     scalecolor(ctmp, nd.tdiff);
290 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by color */
291     addcolor(r->rcol, ctmp);
292     flipsurface(r);
293     }
294     /* add direct component */
295     direct(r, diraniso, &nd);
296 greg 2.27
297     return(1);
298 greg 2.1 }
299    
300    
301     static
302     getacoords(r, np) /* set up coordinate system */
303     RAY *r;
304     register ANISODAT *np;
305     {
306     register MFUNC *mf;
307     register int i;
308    
309     mf = getfunc(np->mp, 3, 0x7, 1);
310     setfunc(np->mp, r);
311     errno = 0;
312     for (i = 0; i < 3; i++)
313     np->u[i] = evalue(mf->ep[i]);
314     if (errno) {
315     objerror(np->mp, WARNING, "compute error");
316     np->specfl |= SP_BADU;
317     return;
318     }
319 greg 2.16 if (mf->f != &unitxf)
320     multv3(np->u, np->u, mf->f->xfm);
321 greg 2.1 fcross(np->v, np->pnorm, np->u);
322     if (normalize(np->v) == 0.0) {
323     objerror(np->mp, WARNING, "illegal orientation vector");
324     np->specfl |= SP_BADU;
325     return;
326     }
327     fcross(np->u, np->v, np->pnorm);
328     }
329    
330    
331     static
332     agaussamp(r, np) /* sample anisotropic gaussian specular */
333     RAY *r;
334     register ANISODAT *np;
335     {
336     RAY sr;
337     FVECT h;
338     double rv[2];
339     double d, sinp, cosp;
340     register int i;
341     /* compute reflection */
342 greg 2.4 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
343 greg 2.1 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
344     dimlist[ndims++] = (int)np->mp;
345 greg 2.6 d = urand(ilhash(dimlist,ndims)+samplendx);
346     multisamp(rv, 2, d);
347     d = 2.0*PI * rv[0];
348 greg 2.18 cosp = cos(d) * np->u_alpha;
349     sinp = sin(d) * np->v_alpha;
350     d = sqrt(cosp*cosp + sinp*sinp);
351 greg 2.6 cosp /= d;
352     sinp /= d;
353     rv[1] = 1.0 - specjitter*rv[1];
354     if (rv[1] <= FTINY)
355     d = 1.0;
356     else
357     d = sqrt(-log(rv[1]) /
358 greg 2.18 (cosp*cosp/(np->u_alpha*np->u_alpha) +
359     sinp*sinp/(np->v_alpha*np->v_alpha)));
360 greg 2.6 for (i = 0; i < 3; i++)
361     h[i] = np->pnorm[i] +
362     d*(cosp*np->u[i] + sinp*np->v[i]);
363     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
364     for (i = 0; i < 3; i++)
365     sr.rdir[i] = r->rdir[i] + d*h[i];
366     if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */
367     VCOPY(sr.rdir, np->vrefl); /* jitter no good */
368     rayvalue(&sr);
369     multcolor(sr.rcol, np->scolor);
370     addcolor(r->rcol, sr.rcol);
371 greg 2.1 ndims--;
372     }
373     /* compute transmission */
374 greg 2.7 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
375     rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
376     dimlist[ndims++] = (int)np->mp;
377     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
378     multisamp(rv, 2, d);
379     d = 2.0*PI * rv[0];
380 greg 2.18 cosp = cos(d) * np->u_alpha;
381     sinp = sin(d) * np->v_alpha;
382     d = sqrt(cosp*cosp + sinp*sinp);
383     cosp /= d;
384     sinp /= d;
385 greg 2.7 rv[1] = 1.0 - specjitter*rv[1];
386     if (rv[1] <= FTINY)
387     d = 1.0;
388     else
389     d = sqrt(-log(rv[1]) /
390 greg 2.18 (cosp*cosp/(np->u_alpha*np->u_alpha) +
391     sinp*sinp/(np->v_alpha*np->u_alpha)));
392 greg 2.7 for (i = 0; i < 3; i++)
393     sr.rdir[i] = np->prdir[i] +
394     d*(cosp*np->u[i] + sinp*np->v[i]);
395     if (DOT(sr.rdir, r->ron) < -FTINY)
396     normalize(sr.rdir); /* OK, normalize */
397     else
398     VCOPY(sr.rdir, np->prdir); /* else no jitter */
399     rayvalue(&sr);
400 greg 2.10 scalecolor(sr.rcol, np->tspec);
401     multcolor(sr.rcol, np->mcolor); /* modify by color */
402 greg 2.7 addcolor(r->rcol, sr.rcol);
403     ndims--;
404     }
405 greg 2.1 }