ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.27
Committed: Wed Jan 12 16:46:32 1994 UTC (30 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.26: +3 -1 lines
Log Message:
made mixtures work with materials

File Contents

# User Rev Content
1 greg 2.1 /* Copyright (c) 1992 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Shading functions for anisotropic materials.
9     */
10    
11     #include "ray.h"
12    
13     #include "otypes.h"
14    
15     #include "func.h"
16    
17     #include "random.h"
18    
19 greg 2.4 extern double specthresh; /* specular sampling threshold */
20     extern double specjitter; /* specular sampling jitter */
21    
22 greg 2.26 static agaussamp(), getacoords();
23 greg 2.24
24 greg 2.1 /*
25 greg 2.22 * This routine implements the anisotropic Gaussian
26     * model described by Ward in Siggraph `92 article.
27 greg 2.1 * We orient the surface towards the incoming ray, so a single
28     * surface can be used to represent an infinitely thin object.
29     *
30     * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
31     * 4+ ux uy uz funcfile [transform...]
32     * 0
33     * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
34     *
35     * Real arguments for MAT_TRANS2 are:
36     * 8 red grn blu rspec u-rough v-rough trans tspec
37     */
38    
39     /* specularity flags */
40     #define SP_REFL 01 /* has reflected specular component */
41     #define SP_TRAN 02 /* has transmitted specular */
42 greg 2.10 #define SP_FLAT 04 /* reflecting surface is flat */
43     #define SP_RBLT 010 /* reflection below sample threshold */
44     #define SP_TBLT 020 /* transmission below threshold */
45     #define SP_BADU 040 /* bad u direction calculation */
46 greg 2.1
47     typedef struct {
48 greg 2.2 OBJREC *mp; /* material pointer */
49 greg 2.1 RAY *rp; /* ray pointer */
50     short specfl; /* specularity flags, defined above */
51     COLOR mcolor; /* color of this material */
52     COLOR scolor; /* color of specular component */
53 greg 2.6 FVECT vrefl; /* vector in reflected direction */
54 greg 2.1 FVECT prdir; /* vector in transmitted direction */
55     FVECT u, v; /* u and v vectors orienting anisotropy */
56 greg 2.18 double u_alpha; /* u roughness */
57     double v_alpha; /* v roughness */
58 greg 2.1 double rdiff, rspec; /* reflected specular, diffuse */
59     double trans; /* transmissivity */
60     double tdiff, tspec; /* transmitted specular, diffuse */
61     FVECT pnorm; /* perturbed surface normal */
62     double pdot; /* perturbed dot product */
63     } ANISODAT; /* anisotropic material data */
64    
65    
66     diraniso(cval, np, ldir, omega) /* compute source contribution */
67     COLOR cval; /* returned coefficient */
68     register ANISODAT *np; /* material data */
69     FVECT ldir; /* light source direction */
70     double omega; /* light source size */
71     {
72     double ldot;
73 greg 2.16 double dtmp, dtmp1, dtmp2;
74 greg 2.1 FVECT h;
75     double au2, av2;
76     COLOR ctmp;
77    
78     setcolor(cval, 0.0, 0.0, 0.0);
79    
80     ldot = DOT(np->pnorm, ldir);
81    
82     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
83     return; /* wrong side */
84    
85     if (ldot > FTINY && np->rdiff > FTINY) {
86     /*
87     * Compute and add diffuse reflected component to returned
88     * color. The diffuse reflected component will always be
89     * modified by the color of the material.
90     */
91     copycolor(ctmp, np->mcolor);
92     dtmp = ldot * omega * np->rdiff / PI;
93     scalecolor(ctmp, dtmp);
94     addcolor(cval, ctmp);
95     }
96 greg 2.10 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
97 greg 2.1 /*
98     * Compute specular reflection coefficient using
99     * anisotropic gaussian distribution model.
100     */
101 greg 2.2 /* add source width if flat */
102     if (np->specfl & SP_FLAT)
103     au2 = av2 = omega/(4.0*PI);
104     else
105     au2 = av2 = 0.0;
106 greg 2.18 au2 += np->u_alpha*np->u_alpha;
107     av2 += np->v_alpha*np->v_alpha;
108 greg 2.1 /* half vector */
109     h[0] = ldir[0] - np->rp->rdir[0];
110     h[1] = ldir[1] - np->rp->rdir[1];
111     h[2] = ldir[2] - np->rp->rdir[2];
112     /* ellipse */
113 greg 2.16 dtmp1 = DOT(np->u, h);
114     dtmp1 *= dtmp1 / au2;
115 greg 2.1 dtmp2 = DOT(np->v, h);
116     dtmp2 *= dtmp2 / av2;
117     /* gaussian */
118 greg 2.23 dtmp = DOT(np->pnorm, h);
119     dtmp = (dtmp1 + dtmp2) / (dtmp*dtmp);
120     dtmp = exp(-dtmp) * (0.25/PI)
121 greg 2.16 * sqrt(ldot/(np->pdot*au2*av2));
122 greg 2.1 /* worth using? */
123     if (dtmp > FTINY) {
124     copycolor(ctmp, np->scolor);
125 greg 2.16 dtmp *= omega;
126 greg 2.1 scalecolor(ctmp, dtmp);
127     addcolor(cval, ctmp);
128     }
129     }
130     if (ldot < -FTINY && np->tdiff > FTINY) {
131     /*
132     * Compute diffuse transmission.
133     */
134     copycolor(ctmp, np->mcolor);
135     dtmp = -ldot * omega * np->tdiff / PI;
136     scalecolor(ctmp, dtmp);
137     addcolor(cval, ctmp);
138     }
139 greg 2.10 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
140 greg 2.1 /*
141     * Compute specular transmission. Specular transmission
142     * is always modified by material color.
143     */
144     /* roughness + source */
145 greg 2.16 au2 = av2 = omega / PI;
146 greg 2.18 au2 += np->u_alpha*np->u_alpha;
147     av2 += np->v_alpha*np->v_alpha;
148 greg 2.16 /* "half vector" */
149     h[0] = ldir[0] - np->prdir[0];
150     h[1] = ldir[1] - np->prdir[1];
151     h[2] = ldir[2] - np->prdir[2];
152 greg 2.19 dtmp = DOT(h,h);
153 greg 2.16 if (dtmp > FTINY*FTINY) {
154 greg 2.19 dtmp1 = DOT(h,np->pnorm);
155     dtmp = 1.0 - dtmp1*dtmp1/dtmp;
156     if (dtmp > FTINY*FTINY) {
157     dtmp1 = DOT(h,np->u);
158 greg 2.23 dtmp1 *= dtmp1 / au2;
159 greg 2.19 dtmp2 = DOT(h,np->v);
160 greg 2.23 dtmp2 *= dtmp2 / av2;
161 greg 2.19 dtmp = (dtmp1 + dtmp2) / dtmp;
162     }
163 greg 2.16 } else
164     dtmp = 0.0;
165 greg 2.1 /* gaussian */
166 greg 2.21 dtmp = exp(-dtmp) * (1.0/PI)
167 greg 2.16 * sqrt(-ldot/(np->pdot*au2*av2));
168 greg 2.1 /* worth using? */
169     if (dtmp > FTINY) {
170     copycolor(ctmp, np->mcolor);
171 greg 2.16 dtmp *= np->tspec * omega;
172 greg 2.1 scalecolor(ctmp, dtmp);
173     addcolor(cval, ctmp);
174     }
175     }
176     }
177    
178    
179     m_aniso(m, r) /* shade ray that hit something anisotropic */
180     register OBJREC *m;
181     register RAY *r;
182     {
183     ANISODAT nd;
184     COLOR ctmp;
185     register int i;
186     /* easy shadow test */
187 greg 2.10 if (r->crtype & SHADOW)
188 greg 2.27 return(1);
189 greg 2.1
190     if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
191     objerror(m, USER, "bad number of real arguments");
192 greg 2.2 nd.mp = m;
193 greg 2.1 nd.rp = r;
194     /* get material color */
195     setcolor(nd.mcolor, m->oargs.farg[0],
196     m->oargs.farg[1],
197     m->oargs.farg[2]);
198     /* get roughness */
199     nd.specfl = 0;
200 greg 2.18 nd.u_alpha = m->oargs.farg[4];
201     nd.v_alpha = m->oargs.farg[5];
202     if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
203 greg 2.10 objerror(m, USER, "roughness too small");
204 greg 2.1 /* reorient if necessary */
205     if (r->rod < 0.0)
206     flipsurface(r);
207     /* get modifiers */
208     raytexture(r, m->omod);
209     nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
210     if (nd.pdot < .001)
211     nd.pdot = .001; /* non-zero for diraniso() */
212     multcolor(nd.mcolor, r->pcol); /* modify material color */
213     /* get specular component */
214     if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
215     nd.specfl |= SP_REFL;
216     /* compute specular color */
217     if (m->otype == MAT_METAL2)
218     copycolor(nd.scolor, nd.mcolor);
219     else
220     setcolor(nd.scolor, 1.0, 1.0, 1.0);
221     scalecolor(nd.scolor, nd.rspec);
222 greg 2.4 /* check threshold */
223 greg 2.25 if (specthresh >= nd.rspec-FTINY)
224 greg 2.4 nd.specfl |= SP_RBLT;
225 greg 2.6 /* compute refl. direction */
226     for (i = 0; i < 3; i++)
227     nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
228     if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
229     for (i = 0; i < 3; i++) /* safety measure */
230     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
231 greg 2.1 }
232     /* compute transmission */
233 greg 2.16 if (m->otype == MAT_TRANS2) {
234 greg 2.1 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
235     nd.tspec = nd.trans * m->oargs.farg[7];
236     nd.tdiff = nd.trans - nd.tspec;
237     if (nd.tspec > FTINY) {
238     nd.specfl |= SP_TRAN;
239 greg 2.4 /* check threshold */
240 greg 2.25 if (specthresh >= nd.tspec-FTINY)
241 greg 2.4 nd.specfl |= SP_TBLT;
242 greg 2.10 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
243 greg 2.1 VCOPY(nd.prdir, r->rdir);
244     } else {
245     for (i = 0; i < 3; i++) /* perturb */
246 greg 2.17 nd.prdir[i] = r->rdir[i] - r->pert[i];
247 greg 2.6 if (DOT(nd.prdir, r->ron) < -FTINY)
248     normalize(nd.prdir); /* OK */
249     else
250     VCOPY(nd.prdir, r->rdir);
251 greg 2.1 }
252     }
253     } else
254     nd.tdiff = nd.tspec = nd.trans = 0.0;
255    
256     /* diffuse reflection */
257     nd.rdiff = 1.0 - nd.trans - nd.rspec;
258    
259 greg 2.11 if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
260     r->ro->otype == OBJ_RING))
261 greg 2.4 nd.specfl |= SP_FLAT;
262    
263 greg 2.1 getacoords(r, &nd); /* set up coordinates */
264    
265 greg 2.10 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
266 greg 2.1 agaussamp(r, &nd);
267    
268     if (nd.rdiff > FTINY) { /* ambient from this side */
269     ambient(ctmp, r);
270 greg 2.4 if (nd.specfl & SP_RBLT)
271     scalecolor(ctmp, 1.0-nd.trans);
272     else
273     scalecolor(ctmp, nd.rdiff);
274 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by material color */
275     addcolor(r->rcol, ctmp); /* add to returned color */
276     }
277     if (nd.tdiff > FTINY) { /* ambient from other side */
278     flipsurface(r);
279     ambient(ctmp, r);
280 greg 2.4 if (nd.specfl & SP_TBLT)
281     scalecolor(ctmp, nd.trans);
282     else
283     scalecolor(ctmp, nd.tdiff);
284 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by color */
285     addcolor(r->rcol, ctmp);
286     flipsurface(r);
287     }
288     /* add direct component */
289     direct(r, diraniso, &nd);
290 greg 2.27
291     return(1);
292 greg 2.1 }
293    
294    
295     static
296     getacoords(r, np) /* set up coordinate system */
297     RAY *r;
298     register ANISODAT *np;
299     {
300     register MFUNC *mf;
301     register int i;
302    
303     mf = getfunc(np->mp, 3, 0x7, 1);
304     setfunc(np->mp, r);
305     errno = 0;
306     for (i = 0; i < 3; i++)
307     np->u[i] = evalue(mf->ep[i]);
308     if (errno) {
309     objerror(np->mp, WARNING, "compute error");
310     np->specfl |= SP_BADU;
311     return;
312     }
313 greg 2.16 if (mf->f != &unitxf)
314     multv3(np->u, np->u, mf->f->xfm);
315 greg 2.1 fcross(np->v, np->pnorm, np->u);
316     if (normalize(np->v) == 0.0) {
317     objerror(np->mp, WARNING, "illegal orientation vector");
318     np->specfl |= SP_BADU;
319     return;
320     }
321     fcross(np->u, np->v, np->pnorm);
322     }
323    
324    
325     static
326     agaussamp(r, np) /* sample anisotropic gaussian specular */
327     RAY *r;
328     register ANISODAT *np;
329     {
330     RAY sr;
331     FVECT h;
332     double rv[2];
333     double d, sinp, cosp;
334     register int i;
335     /* compute reflection */
336 greg 2.4 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
337 greg 2.1 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
338     dimlist[ndims++] = (int)np->mp;
339 greg 2.6 d = urand(ilhash(dimlist,ndims)+samplendx);
340     multisamp(rv, 2, d);
341     d = 2.0*PI * rv[0];
342 greg 2.18 cosp = cos(d) * np->u_alpha;
343     sinp = sin(d) * np->v_alpha;
344     d = sqrt(cosp*cosp + sinp*sinp);
345 greg 2.6 cosp /= d;
346     sinp /= d;
347     rv[1] = 1.0 - specjitter*rv[1];
348     if (rv[1] <= FTINY)
349     d = 1.0;
350     else
351     d = sqrt(-log(rv[1]) /
352 greg 2.18 (cosp*cosp/(np->u_alpha*np->u_alpha) +
353     sinp*sinp/(np->v_alpha*np->v_alpha)));
354 greg 2.6 for (i = 0; i < 3; i++)
355     h[i] = np->pnorm[i] +
356     d*(cosp*np->u[i] + sinp*np->v[i]);
357     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
358     for (i = 0; i < 3; i++)
359     sr.rdir[i] = r->rdir[i] + d*h[i];
360     if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */
361     VCOPY(sr.rdir, np->vrefl); /* jitter no good */
362     rayvalue(&sr);
363     multcolor(sr.rcol, np->scolor);
364     addcolor(r->rcol, sr.rcol);
365 greg 2.1 ndims--;
366     }
367     /* compute transmission */
368 greg 2.7 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
369     rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
370     dimlist[ndims++] = (int)np->mp;
371     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
372     multisamp(rv, 2, d);
373     d = 2.0*PI * rv[0];
374 greg 2.18 cosp = cos(d) * np->u_alpha;
375     sinp = sin(d) * np->v_alpha;
376     d = sqrt(cosp*cosp + sinp*sinp);
377     cosp /= d;
378     sinp /= d;
379 greg 2.7 rv[1] = 1.0 - specjitter*rv[1];
380     if (rv[1] <= FTINY)
381     d = 1.0;
382     else
383     d = sqrt(-log(rv[1]) /
384 greg 2.18 (cosp*cosp/(np->u_alpha*np->u_alpha) +
385     sinp*sinp/(np->v_alpha*np->u_alpha)));
386 greg 2.7 for (i = 0; i < 3; i++)
387     sr.rdir[i] = np->prdir[i] +
388     d*(cosp*np->u[i] + sinp*np->v[i]);
389     if (DOT(sr.rdir, r->ron) < -FTINY)
390     normalize(sr.rdir); /* OK, normalize */
391     else
392     VCOPY(sr.rdir, np->prdir); /* else no jitter */
393     rayvalue(&sr);
394 greg 2.10 scalecolor(sr.rcol, np->tspec);
395     multcolor(sr.rcol, np->mcolor); /* modify by color */
396 greg 2.7 addcolor(r->rcol, sr.rcol);
397     ndims--;
398     }
399 greg 2.1 }