ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.21
Committed: Sun Aug 23 08:48:54 1992 UTC (31 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.20: +2 -2 lines
Log Message:
minor optimization

File Contents

# User Rev Content
1 greg 2.1 /* Copyright (c) 1992 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Shading functions for anisotropic materials.
9     */
10    
11     #include "ray.h"
12    
13     #include "otypes.h"
14    
15     #include "func.h"
16    
17     #include "random.h"
18    
19 greg 2.4 extern double specthresh; /* specular sampling threshold */
20     extern double specjitter; /* specular sampling jitter */
21    
22 greg 2.1 /*
23     * This anisotropic reflection model uses a variant on the
24     * exponential Gaussian used in normal.c.
25     * We orient the surface towards the incoming ray, so a single
26     * surface can be used to represent an infinitely thin object.
27     *
28     * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
29     * 4+ ux uy uz funcfile [transform...]
30     * 0
31     * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
32     *
33     * Real arguments for MAT_TRANS2 are:
34     * 8 red grn blu rspec u-rough v-rough trans tspec
35     */
36    
37 greg 2.14 #define BSPEC(m) (6.0) /* specularity parameter b */
38    
39 greg 2.1 /* specularity flags */
40     #define SP_REFL 01 /* has reflected specular component */
41     #define SP_TRAN 02 /* has transmitted specular */
42 greg 2.10 #define SP_FLAT 04 /* reflecting surface is flat */
43     #define SP_RBLT 010 /* reflection below sample threshold */
44     #define SP_TBLT 020 /* transmission below threshold */
45     #define SP_BADU 040 /* bad u direction calculation */
46 greg 2.1
47     typedef struct {
48 greg 2.2 OBJREC *mp; /* material pointer */
49 greg 2.1 RAY *rp; /* ray pointer */
50     short specfl; /* specularity flags, defined above */
51     COLOR mcolor; /* color of this material */
52     COLOR scolor; /* color of specular component */
53 greg 2.6 FVECT vrefl; /* vector in reflected direction */
54 greg 2.1 FVECT prdir; /* vector in transmitted direction */
55     FVECT u, v; /* u and v vectors orienting anisotropy */
56 greg 2.18 double u_alpha; /* u roughness */
57     double v_alpha; /* v roughness */
58 greg 2.1 double rdiff, rspec; /* reflected specular, diffuse */
59     double trans; /* transmissivity */
60     double tdiff, tspec; /* transmitted specular, diffuse */
61     FVECT pnorm; /* perturbed surface normal */
62     double pdot; /* perturbed dot product */
63     } ANISODAT; /* anisotropic material data */
64    
65    
66     diraniso(cval, np, ldir, omega) /* compute source contribution */
67     COLOR cval; /* returned coefficient */
68     register ANISODAT *np; /* material data */
69     FVECT ldir; /* light source direction */
70     double omega; /* light source size */
71     {
72     double ldot;
73 greg 2.16 double dtmp, dtmp1, dtmp2;
74 greg 2.1 FVECT h;
75     double au2, av2;
76     COLOR ctmp;
77    
78     setcolor(cval, 0.0, 0.0, 0.0);
79    
80     ldot = DOT(np->pnorm, ldir);
81    
82     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
83     return; /* wrong side */
84    
85     if (ldot > FTINY && np->rdiff > FTINY) {
86     /*
87     * Compute and add diffuse reflected component to returned
88     * color. The diffuse reflected component will always be
89     * modified by the color of the material.
90     */
91     copycolor(ctmp, np->mcolor);
92     dtmp = ldot * omega * np->rdiff / PI;
93     scalecolor(ctmp, dtmp);
94     addcolor(cval, ctmp);
95     }
96 greg 2.10 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
97 greg 2.1 /*
98     * Compute specular reflection coefficient using
99     * anisotropic gaussian distribution model.
100     */
101 greg 2.2 /* add source width if flat */
102     if (np->specfl & SP_FLAT)
103     au2 = av2 = omega/(4.0*PI);
104     else
105     au2 = av2 = 0.0;
106 greg 2.18 au2 += np->u_alpha*np->u_alpha;
107     av2 += np->v_alpha*np->v_alpha;
108 greg 2.1 /* half vector */
109     h[0] = ldir[0] - np->rp->rdir[0];
110     h[1] = ldir[1] - np->rp->rdir[1];
111     h[2] = ldir[2] - np->rp->rdir[2];
112     normalize(h);
113     /* ellipse */
114 greg 2.16 dtmp1 = DOT(np->u, h);
115     dtmp1 *= dtmp1 / au2;
116 greg 2.1 dtmp2 = DOT(np->v, h);
117     dtmp2 *= dtmp2 / av2;
118     /* gaussian */
119 greg 2.16 dtmp = (dtmp1 + dtmp2) / (1.0 + DOT(np->pnorm, h));
120 greg 2.21 dtmp = exp(-2.0*dtmp) * (1.0/4.0/PI)
121 greg 2.16 * sqrt(ldot/(np->pdot*au2*av2));
122 greg 2.1 /* worth using? */
123     if (dtmp > FTINY) {
124     copycolor(ctmp, np->scolor);
125 greg 2.16 dtmp *= omega;
126 greg 2.1 scalecolor(ctmp, dtmp);
127     addcolor(cval, ctmp);
128     }
129     }
130     if (ldot < -FTINY && np->tdiff > FTINY) {
131     /*
132     * Compute diffuse transmission.
133     */
134     copycolor(ctmp, np->mcolor);
135     dtmp = -ldot * omega * np->tdiff / PI;
136     scalecolor(ctmp, dtmp);
137     addcolor(cval, ctmp);
138     }
139 greg 2.10 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
140 greg 2.1 /*
141     * Compute specular transmission. Specular transmission
142     * is always modified by material color.
143     */
144     /* roughness + source */
145 greg 2.16 au2 = av2 = omega / PI;
146 greg 2.18 au2 += np->u_alpha*np->u_alpha;
147     av2 += np->v_alpha*np->v_alpha;
148 greg 2.16 /* "half vector" */
149     h[0] = ldir[0] - np->prdir[0];
150     h[1] = ldir[1] - np->prdir[1];
151     h[2] = ldir[2] - np->prdir[2];
152 greg 2.19 dtmp = DOT(h,h);
153 greg 2.16 if (dtmp > FTINY*FTINY) {
154 greg 2.19 dtmp1 = DOT(h,np->pnorm);
155     dtmp = 1.0 - dtmp1*dtmp1/dtmp;
156     if (dtmp > FTINY*FTINY) {
157     dtmp1 = DOT(h,np->u);
158     dtmp1 = dtmp1*dtmp1 / au2;
159     dtmp2 = DOT(h,np->v);
160     dtmp2 = dtmp2*dtmp2 / av2;
161     dtmp = (dtmp1 + dtmp2) / dtmp;
162     }
163 greg 2.16 } else
164     dtmp = 0.0;
165 greg 2.1 /* gaussian */
166 greg 2.21 dtmp = exp(-dtmp) * (1.0/PI)
167 greg 2.16 * sqrt(-ldot/(np->pdot*au2*av2));
168 greg 2.1 /* worth using? */
169     if (dtmp > FTINY) {
170     copycolor(ctmp, np->mcolor);
171 greg 2.16 dtmp *= np->tspec * omega;
172 greg 2.1 scalecolor(ctmp, dtmp);
173     addcolor(cval, ctmp);
174     }
175     }
176     }
177    
178    
179     m_aniso(m, r) /* shade ray that hit something anisotropic */
180     register OBJREC *m;
181     register RAY *r;
182     {
183     ANISODAT nd;
184     double dtmp;
185     COLOR ctmp;
186     register int i;
187     /* easy shadow test */
188 greg 2.10 if (r->crtype & SHADOW)
189 greg 2.1 return;
190    
191     if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
192     objerror(m, USER, "bad number of real arguments");
193 greg 2.2 nd.mp = m;
194 greg 2.1 nd.rp = r;
195     /* get material color */
196     setcolor(nd.mcolor, m->oargs.farg[0],
197     m->oargs.farg[1],
198     m->oargs.farg[2]);
199     /* get roughness */
200     nd.specfl = 0;
201 greg 2.18 nd.u_alpha = m->oargs.farg[4];
202     nd.v_alpha = m->oargs.farg[5];
203     if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
204 greg 2.10 objerror(m, USER, "roughness too small");
205 greg 2.1 /* reorient if necessary */
206     if (r->rod < 0.0)
207     flipsurface(r);
208     /* get modifiers */
209     raytexture(r, m->omod);
210     nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
211     if (nd.pdot < .001)
212     nd.pdot = .001; /* non-zero for diraniso() */
213     multcolor(nd.mcolor, r->pcol); /* modify material color */
214     /* get specular component */
215     if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
216     nd.specfl |= SP_REFL;
217     /* compute specular color */
218     if (m->otype == MAT_METAL2)
219     copycolor(nd.scolor, nd.mcolor);
220     else
221     setcolor(nd.scolor, 1.0, 1.0, 1.0);
222     scalecolor(nd.scolor, nd.rspec);
223 greg 2.14 /* improved model */
224     dtmp = exp(-BSPEC(m)*nd.pdot);
225     for (i = 0; i < 3; i++)
226     colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
227     nd.rspec += (1.0-nd.rspec)*dtmp;
228 greg 2.4 /* check threshold */
229 greg 2.5 if (specthresh > FTINY &&
230 greg 2.12 (specthresh >= 1.-FTINY ||
231 greg 2.15 specthresh + .05 - .1*frandom() > nd.rspec))
232 greg 2.4 nd.specfl |= SP_RBLT;
233 greg 2.6 /* compute refl. direction */
234     for (i = 0; i < 3; i++)
235     nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
236     if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
237     for (i = 0; i < 3; i++) /* safety measure */
238     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
239 greg 2.1 }
240     /* compute transmission */
241 greg 2.16 if (m->otype == MAT_TRANS2) {
242 greg 2.1 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
243     nd.tspec = nd.trans * m->oargs.farg[7];
244     nd.tdiff = nd.trans - nd.tspec;
245     if (nd.tspec > FTINY) {
246     nd.specfl |= SP_TRAN;
247 greg 2.4 /* check threshold */
248 greg 2.5 if (specthresh > FTINY &&
249 greg 2.12 (specthresh >= 1.-FTINY ||
250 greg 2.15 specthresh + .05 - .1*frandom() > nd.tspec))
251 greg 2.4 nd.specfl |= SP_TBLT;
252 greg 2.10 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
253 greg 2.1 VCOPY(nd.prdir, r->rdir);
254     } else {
255     for (i = 0; i < 3; i++) /* perturb */
256 greg 2.17 nd.prdir[i] = r->rdir[i] - r->pert[i];
257 greg 2.6 if (DOT(nd.prdir, r->ron) < -FTINY)
258     normalize(nd.prdir); /* OK */
259     else
260     VCOPY(nd.prdir, r->rdir);
261 greg 2.1 }
262     }
263     } else
264     nd.tdiff = nd.tspec = nd.trans = 0.0;
265    
266     /* diffuse reflection */
267     nd.rdiff = 1.0 - nd.trans - nd.rspec;
268    
269 greg 2.11 if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
270     r->ro->otype == OBJ_RING))
271 greg 2.4 nd.specfl |= SP_FLAT;
272    
273 greg 2.1 getacoords(r, &nd); /* set up coordinates */
274    
275 greg 2.10 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
276 greg 2.1 agaussamp(r, &nd);
277    
278     if (nd.rdiff > FTINY) { /* ambient from this side */
279     ambient(ctmp, r);
280 greg 2.4 if (nd.specfl & SP_RBLT)
281     scalecolor(ctmp, 1.0-nd.trans);
282     else
283     scalecolor(ctmp, nd.rdiff);
284 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by material color */
285     addcolor(r->rcol, ctmp); /* add to returned color */
286     }
287     if (nd.tdiff > FTINY) { /* ambient from other side */
288     flipsurface(r);
289     ambient(ctmp, r);
290 greg 2.4 if (nd.specfl & SP_TBLT)
291     scalecolor(ctmp, nd.trans);
292     else
293     scalecolor(ctmp, nd.tdiff);
294 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by color */
295     addcolor(r->rcol, ctmp);
296     flipsurface(r);
297     }
298     /* add direct component */
299     direct(r, diraniso, &nd);
300     }
301    
302    
303     static
304     getacoords(r, np) /* set up coordinate system */
305     RAY *r;
306     register ANISODAT *np;
307     {
308     register MFUNC *mf;
309     register int i;
310    
311     mf = getfunc(np->mp, 3, 0x7, 1);
312     setfunc(np->mp, r);
313     errno = 0;
314     for (i = 0; i < 3; i++)
315     np->u[i] = evalue(mf->ep[i]);
316     if (errno) {
317     objerror(np->mp, WARNING, "compute error");
318     np->specfl |= SP_BADU;
319     return;
320     }
321 greg 2.16 if (mf->f != &unitxf)
322     multv3(np->u, np->u, mf->f->xfm);
323 greg 2.1 fcross(np->v, np->pnorm, np->u);
324     if (normalize(np->v) == 0.0) {
325     objerror(np->mp, WARNING, "illegal orientation vector");
326     np->specfl |= SP_BADU;
327     return;
328     }
329     fcross(np->u, np->v, np->pnorm);
330     }
331    
332    
333     static
334     agaussamp(r, np) /* sample anisotropic gaussian specular */
335     RAY *r;
336     register ANISODAT *np;
337     {
338     RAY sr;
339     FVECT h;
340     double rv[2];
341     double d, sinp, cosp;
342     register int i;
343     /* compute reflection */
344 greg 2.4 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
345 greg 2.1 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
346     dimlist[ndims++] = (int)np->mp;
347 greg 2.6 d = urand(ilhash(dimlist,ndims)+samplendx);
348     multisamp(rv, 2, d);
349     d = 2.0*PI * rv[0];
350 greg 2.18 cosp = cos(d) * np->u_alpha;
351     sinp = sin(d) * np->v_alpha;
352     d = sqrt(cosp*cosp + sinp*sinp);
353 greg 2.6 cosp /= d;
354     sinp /= d;
355     rv[1] = 1.0 - specjitter*rv[1];
356     if (rv[1] <= FTINY)
357     d = 1.0;
358     else
359     d = sqrt(-log(rv[1]) /
360 greg 2.18 (cosp*cosp/(np->u_alpha*np->u_alpha) +
361     sinp*sinp/(np->v_alpha*np->v_alpha)));
362 greg 2.6 for (i = 0; i < 3; i++)
363     h[i] = np->pnorm[i] +
364     d*(cosp*np->u[i] + sinp*np->v[i]);
365     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
366     for (i = 0; i < 3; i++)
367     sr.rdir[i] = r->rdir[i] + d*h[i];
368     if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */
369     VCOPY(sr.rdir, np->vrefl); /* jitter no good */
370     rayvalue(&sr);
371     multcolor(sr.rcol, np->scolor);
372     addcolor(r->rcol, sr.rcol);
373 greg 2.1 ndims--;
374     }
375     /* compute transmission */
376 greg 2.7 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
377     rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
378     dimlist[ndims++] = (int)np->mp;
379     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
380     multisamp(rv, 2, d);
381     d = 2.0*PI * rv[0];
382 greg 2.18 cosp = cos(d) * np->u_alpha;
383     sinp = sin(d) * np->v_alpha;
384     d = sqrt(cosp*cosp + sinp*sinp);
385     cosp /= d;
386     sinp /= d;
387 greg 2.7 rv[1] = 1.0 - specjitter*rv[1];
388     if (rv[1] <= FTINY)
389     d = 1.0;
390     else
391     d = sqrt(-log(rv[1]) /
392 greg 2.18 (cosp*cosp/(np->u_alpha*np->u_alpha) +
393     sinp*sinp/(np->v_alpha*np->u_alpha)));
394 greg 2.7 for (i = 0; i < 3; i++)
395     sr.rdir[i] = np->prdir[i] +
396     d*(cosp*np->u[i] + sinp*np->v[i]);
397     if (DOT(sr.rdir, r->ron) < -FTINY)
398     normalize(sr.rdir); /* OK, normalize */
399     else
400     VCOPY(sr.rdir, np->prdir); /* else no jitter */
401     rayvalue(&sr);
402 greg 2.10 scalecolor(sr.rcol, np->tspec);
403     multcolor(sr.rcol, np->mcolor); /* modify by color */
404 greg 2.7 addcolor(r->rcol, sr.rcol);
405     ndims--;
406     }
407 greg 2.1 }