ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.13
Committed: Mon Apr 20 09:25:47 1992 UTC (32 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.12: +2 -2 lines
Log Message:
corrected normalization of light source highlights

File Contents

# User Rev Content
1 greg 2.1 /* Copyright (c) 1992 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Shading functions for anisotropic materials.
9     */
10    
11     #include "ray.h"
12    
13     #include "otypes.h"
14    
15     #include "func.h"
16    
17     #include "random.h"
18    
19 greg 2.4 extern double specthresh; /* specular sampling threshold */
20     extern double specjitter; /* specular sampling jitter */
21    
22 greg 2.1 /*
23     * This anisotropic reflection model uses a variant on the
24     * exponential Gaussian used in normal.c.
25     * We orient the surface towards the incoming ray, so a single
26     * surface can be used to represent an infinitely thin object.
27     *
28     * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
29     * 4+ ux uy uz funcfile [transform...]
30     * 0
31     * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
32     *
33     * Real arguments for MAT_TRANS2 are:
34     * 8 red grn blu rspec u-rough v-rough trans tspec
35     */
36    
37     /* specularity flags */
38     #define SP_REFL 01 /* has reflected specular component */
39     #define SP_TRAN 02 /* has transmitted specular */
40 greg 2.10 #define SP_FLAT 04 /* reflecting surface is flat */
41     #define SP_RBLT 010 /* reflection below sample threshold */
42     #define SP_TBLT 020 /* transmission below threshold */
43     #define SP_BADU 040 /* bad u direction calculation */
44 greg 2.1
45     typedef struct {
46 greg 2.2 OBJREC *mp; /* material pointer */
47 greg 2.1 RAY *rp; /* ray pointer */
48     short specfl; /* specularity flags, defined above */
49     COLOR mcolor; /* color of this material */
50     COLOR scolor; /* color of specular component */
51 greg 2.6 FVECT vrefl; /* vector in reflected direction */
52 greg 2.1 FVECT prdir; /* vector in transmitted direction */
53     FVECT u, v; /* u and v vectors orienting anisotropy */
54     double u_alpha; /* u roughness */
55     double v_alpha; /* v roughness */
56     double rdiff, rspec; /* reflected specular, diffuse */
57     double trans; /* transmissivity */
58     double tdiff, tspec; /* transmitted specular, diffuse */
59     FVECT pnorm; /* perturbed surface normal */
60     double pdot; /* perturbed dot product */
61     } ANISODAT; /* anisotropic material data */
62    
63    
64     diraniso(cval, np, ldir, omega) /* compute source contribution */
65     COLOR cval; /* returned coefficient */
66     register ANISODAT *np; /* material data */
67     FVECT ldir; /* light source direction */
68     double omega; /* light source size */
69     {
70     double ldot;
71     double dtmp, dtmp2;
72     FVECT h;
73     double au2, av2;
74     COLOR ctmp;
75    
76     setcolor(cval, 0.0, 0.0, 0.0);
77    
78     ldot = DOT(np->pnorm, ldir);
79    
80     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
81     return; /* wrong side */
82    
83     if (ldot > FTINY && np->rdiff > FTINY) {
84     /*
85     * Compute and add diffuse reflected component to returned
86     * color. The diffuse reflected component will always be
87     * modified by the color of the material.
88     */
89     copycolor(ctmp, np->mcolor);
90     dtmp = ldot * omega * np->rdiff / PI;
91     scalecolor(ctmp, dtmp);
92     addcolor(cval, ctmp);
93     }
94 greg 2.10 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
95 greg 2.1 /*
96     * Compute specular reflection coefficient using
97     * anisotropic gaussian distribution model.
98     */
99 greg 2.2 /* add source width if flat */
100     if (np->specfl & SP_FLAT)
101     au2 = av2 = omega/(4.0*PI);
102     else
103     au2 = av2 = 0.0;
104 greg 2.1 au2 += np->u_alpha * np->u_alpha;
105     av2 += np->v_alpha * np->v_alpha;
106     /* half vector */
107     h[0] = ldir[0] - np->rp->rdir[0];
108     h[1] = ldir[1] - np->rp->rdir[1];
109     h[2] = ldir[2] - np->rp->rdir[2];
110     normalize(h);
111     /* ellipse */
112     dtmp = DOT(np->u, h);
113     dtmp *= dtmp / au2;
114     dtmp2 = DOT(np->v, h);
115     dtmp2 *= dtmp2 / av2;
116     /* gaussian */
117     dtmp = (dtmp + dtmp2) / (1.0 + DOT(np->pnorm, h));
118     dtmp = exp(-2.0*dtmp) / (4.0*PI * sqrt(au2*av2));
119     /* worth using? */
120     if (dtmp > FTINY) {
121     copycolor(ctmp, np->scolor);
122 greg 2.13 dtmp *= omega * sqrt(ldot/np->pdot);
123 greg 2.1 scalecolor(ctmp, dtmp);
124     addcolor(cval, ctmp);
125     }
126     }
127     if (ldot < -FTINY && np->tdiff > FTINY) {
128     /*
129     * Compute diffuse transmission.
130     */
131     copycolor(ctmp, np->mcolor);
132     dtmp = -ldot * omega * np->tdiff / PI;
133     scalecolor(ctmp, dtmp);
134     addcolor(cval, ctmp);
135     }
136 greg 2.10 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
137 greg 2.1 /*
138     * Compute specular transmission. Specular transmission
139     * is always modified by material color.
140     */
141     /* roughness + source */
142     /* gaussian */
143     dtmp = 0.0;
144     /* worth using? */
145     if (dtmp > FTINY) {
146     copycolor(ctmp, np->mcolor);
147 greg 2.13 dtmp *= np->tspec * omega * sqrt(ldot/np->pdot);
148 greg 2.1 scalecolor(ctmp, dtmp);
149     addcolor(cval, ctmp);
150     }
151     }
152     }
153    
154    
155     m_aniso(m, r) /* shade ray that hit something anisotropic */
156     register OBJREC *m;
157     register RAY *r;
158     {
159     ANISODAT nd;
160     double dtmp;
161     COLOR ctmp;
162     register int i;
163     /* easy shadow test */
164 greg 2.10 if (r->crtype & SHADOW)
165 greg 2.1 return;
166    
167     if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
168     objerror(m, USER, "bad number of real arguments");
169 greg 2.2 nd.mp = m;
170 greg 2.1 nd.rp = r;
171     /* get material color */
172     setcolor(nd.mcolor, m->oargs.farg[0],
173     m->oargs.farg[1],
174     m->oargs.farg[2]);
175     /* get roughness */
176     nd.specfl = 0;
177     nd.u_alpha = m->oargs.farg[4];
178     nd.v_alpha = m->oargs.farg[5];
179 greg 2.10 if (nd.u_alpha < 1e-6 || nd.v_alpha <= 1e-6)
180     objerror(m, USER, "roughness too small");
181 greg 2.1 /* reorient if necessary */
182     if (r->rod < 0.0)
183     flipsurface(r);
184     /* get modifiers */
185     raytexture(r, m->omod);
186     nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
187     if (nd.pdot < .001)
188     nd.pdot = .001; /* non-zero for diraniso() */
189     multcolor(nd.mcolor, r->pcol); /* modify material color */
190     /* get specular component */
191     if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
192     nd.specfl |= SP_REFL;
193     /* compute specular color */
194     if (m->otype == MAT_METAL2)
195     copycolor(nd.scolor, nd.mcolor);
196     else
197     setcolor(nd.scolor, 1.0, 1.0, 1.0);
198     scalecolor(nd.scolor, nd.rspec);
199 greg 2.4 /* check threshold */
200 greg 2.5 if (specthresh > FTINY &&
201 greg 2.12 (specthresh >= 1.-FTINY ||
202     specthresh > nd.rspec))
203 greg 2.4 nd.specfl |= SP_RBLT;
204 greg 2.6 /* compute refl. direction */
205     for (i = 0; i < 3; i++)
206     nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
207     if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
208     for (i = 0; i < 3; i++) /* safety measure */
209     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
210 greg 2.1 }
211     /* compute transmission */
212     if (m->otype == MAT_TRANS) {
213     nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
214     nd.tspec = nd.trans * m->oargs.farg[7];
215     nd.tdiff = nd.trans - nd.tspec;
216     if (nd.tspec > FTINY) {
217     nd.specfl |= SP_TRAN;
218 greg 2.4 /* check threshold */
219 greg 2.5 if (specthresh > FTINY &&
220 greg 2.12 (specthresh >= 1.-FTINY ||
221     specthresh > nd.tspec))
222 greg 2.4 nd.specfl |= SP_TBLT;
223 greg 2.10 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
224 greg 2.1 VCOPY(nd.prdir, r->rdir);
225     } else {
226     for (i = 0; i < 3; i++) /* perturb */
227     nd.prdir[i] = r->rdir[i] -
228 greg 2.7 0.5*r->pert[i];
229 greg 2.6 if (DOT(nd.prdir, r->ron) < -FTINY)
230     normalize(nd.prdir); /* OK */
231     else
232     VCOPY(nd.prdir, r->rdir);
233 greg 2.1 }
234     }
235     } else
236     nd.tdiff = nd.tspec = nd.trans = 0.0;
237    
238     /* diffuse reflection */
239     nd.rdiff = 1.0 - nd.trans - nd.rspec;
240    
241 greg 2.11 if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
242     r->ro->otype == OBJ_RING))
243 greg 2.4 nd.specfl |= SP_FLAT;
244    
245 greg 2.1 getacoords(r, &nd); /* set up coordinates */
246    
247 greg 2.10 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
248 greg 2.1 agaussamp(r, &nd);
249    
250     if (nd.rdiff > FTINY) { /* ambient from this side */
251     ambient(ctmp, r);
252 greg 2.4 if (nd.specfl & SP_RBLT)
253     scalecolor(ctmp, 1.0-nd.trans);
254     else
255     scalecolor(ctmp, nd.rdiff);
256 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by material color */
257     addcolor(r->rcol, ctmp); /* add to returned color */
258     }
259     if (nd.tdiff > FTINY) { /* ambient from other side */
260     flipsurface(r);
261     ambient(ctmp, r);
262 greg 2.4 if (nd.specfl & SP_TBLT)
263     scalecolor(ctmp, nd.trans);
264     else
265     scalecolor(ctmp, nd.tdiff);
266 greg 2.1 multcolor(ctmp, nd.mcolor); /* modified by color */
267     addcolor(r->rcol, ctmp);
268     flipsurface(r);
269     }
270     /* add direct component */
271     direct(r, diraniso, &nd);
272     }
273    
274    
275     static
276     getacoords(r, np) /* set up coordinate system */
277     RAY *r;
278     register ANISODAT *np;
279     {
280     register MFUNC *mf;
281     register int i;
282    
283     mf = getfunc(np->mp, 3, 0x7, 1);
284     setfunc(np->mp, r);
285     errno = 0;
286     for (i = 0; i < 3; i++)
287     np->u[i] = evalue(mf->ep[i]);
288     if (errno) {
289     objerror(np->mp, WARNING, "compute error");
290     np->specfl |= SP_BADU;
291     return;
292     }
293     multv3(np->u, np->u, mf->f->xfm);
294     fcross(np->v, np->pnorm, np->u);
295     if (normalize(np->v) == 0.0) {
296     objerror(np->mp, WARNING, "illegal orientation vector");
297     np->specfl |= SP_BADU;
298     return;
299     }
300     fcross(np->u, np->v, np->pnorm);
301     }
302    
303    
304     static
305     agaussamp(r, np) /* sample anisotropic gaussian specular */
306     RAY *r;
307     register ANISODAT *np;
308     {
309     RAY sr;
310     FVECT h;
311     double rv[2];
312     double d, sinp, cosp;
313     register int i;
314     /* compute reflection */
315 greg 2.4 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
316 greg 2.1 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
317     dimlist[ndims++] = (int)np->mp;
318 greg 2.6 d = urand(ilhash(dimlist,ndims)+samplendx);
319     multisamp(rv, 2, d);
320     d = 2.0*PI * rv[0];
321     cosp = np->u_alpha * cos(d);
322     sinp = np->v_alpha * sin(d);
323     d = sqrt(cosp*cosp + sinp*sinp);
324     cosp /= d;
325     sinp /= d;
326     rv[1] = 1.0 - specjitter*rv[1];
327     if (rv[1] <= FTINY)
328     d = 1.0;
329     else
330     d = sqrt(-log(rv[1]) /
331     (cosp*cosp/(np->u_alpha*np->u_alpha) +
332     sinp*sinp/(np->v_alpha*np->v_alpha)));
333     for (i = 0; i < 3; i++)
334     h[i] = np->pnorm[i] +
335     d*(cosp*np->u[i] + sinp*np->v[i]);
336     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
337     for (i = 0; i < 3; i++)
338     sr.rdir[i] = r->rdir[i] + d*h[i];
339     if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */
340     VCOPY(sr.rdir, np->vrefl); /* jitter no good */
341     rayvalue(&sr);
342     multcolor(sr.rcol, np->scolor);
343     addcolor(r->rcol, sr.rcol);
344 greg 2.1 ndims--;
345     }
346     /* compute transmission */
347 greg 2.7 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
348     rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
349     dimlist[ndims++] = (int)np->mp;
350     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
351     multisamp(rv, 2, d);
352     d = 2.0*PI * rv[0];
353     cosp = cos(d);
354     sinp = sin(d);
355     rv[1] = 1.0 - specjitter*rv[1];
356     if (rv[1] <= FTINY)
357     d = 1.0;
358     else
359     d = sqrt(-log(rv[1]) /
360     (cosp*cosp*4./(np->u_alpha*np->u_alpha) +
361     sinp*sinp*4./(np->v_alpha*np->v_alpha)));
362     for (i = 0; i < 3; i++)
363     sr.rdir[i] = np->prdir[i] +
364     d*(cosp*np->u[i] + sinp*np->v[i]);
365     if (DOT(sr.rdir, r->ron) < -FTINY)
366     normalize(sr.rdir); /* OK, normalize */
367     else
368     VCOPY(sr.rdir, np->prdir); /* else no jitter */
369     rayvalue(&sr);
370 greg 2.10 scalecolor(sr.rcol, np->tspec);
371     multcolor(sr.rcol, np->mcolor); /* modify by color */
372 greg 2.7 addcolor(r->rcol, sr.rcol);
373     ndims--;
374     }
375 greg 2.1 }