ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambient.c
Revision: 1.1
Committed: Thu Feb 2 10:41:17 1989 UTC (35 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Log Message:
Initial revision

File Contents

# User Rev Content
1 greg 1.1 /* Copyright (c) 1986 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * ambient.c - routines dealing with ambient (inter-reflected) component.
9     *
10     * The macro AMBFLUSH (if defined) is the number of ambient values
11     * to wait before flushing to the ambient file.
12     *
13     * 5/9/86
14     */
15    
16     #include "ray.h"
17    
18     #include "octree.h"
19    
20     #include "random.h"
21    
22     #define OCTSCALE 0.5 /* ceil((valid rad.)/(cube size)) */
23    
24     extern CUBE thescene; /* contains space boundaries */
25    
26     extern COLOR ambval; /* global ambient component */
27     extern double ambacc; /* ambient accuracy */
28     extern int ambres; /* ambient resolution */
29     extern int ambdiv; /* number of divisions for calculation */
30     extern int ambssamp; /* number of super-samples */
31     extern int ambounce; /* number of ambient bounces */
32     extern char *amblist[]; /* ambient include/exclude list */
33     extern int ambincl; /* include == 1, exclude == 0 */
34    
35     OBJECT ambset[128]; /* ambient include/exclude set */
36    
37     double maxarad; /* maximum ambient radius */
38     double minarad; /* minimum ambient radius */
39    
40     typedef struct ambval {
41     FVECT pos; /* position in space */
42     FVECT dir; /* normal direction */
43     int lvl; /* recursion level of parent ray */
44     float weight; /* weight of parent ray */
45     COLOR val; /* computed ambient value */
46     float rad; /* validity radius */
47     struct ambval *next; /* next in list */
48     } AMBVAL; /* ambient value */
49    
50     typedef struct ambtree {
51     AMBVAL *alist; /* ambient value list */
52     struct ambtree *kid; /* 8 child nodes */
53     } AMBTREE; /* ambient octree */
54    
55     typedef struct {
56     float k; /* error contribution per sample */
57     COLOR v; /* ray sum */
58     int n; /* number of samples */
59     short t, p; /* theta, phi indices */
60     } AMBSAMP; /* ambient sample */
61    
62     static AMBTREE atrunk; /* our ambient trunk node */
63    
64     static FILE *ambfp = NULL; /* ambient file pointer */
65    
66     #define newambval() (AMBVAL *)bmalloc(sizeof(AMBVAL))
67    
68     #define newambtree() (AMBTREE *)calloc(8, sizeof(AMBTREE))
69    
70     double sumambient(), doambient(), makeambient();
71    
72    
73     setambient(afile) /* initialize calculation */
74     char *afile;
75     {
76     long ftell();
77     char **amblp;
78     OBJECT obj;
79     AMBVAL amb;
80     /* set up ambient set */
81     ambset[0] = 0;
82     for (amblp = amblist; *amblp != NULL; amblp++) {
83     if ((obj = modifier(*amblp)) == OVOID) {
84     sprintf(errmsg, "unknown %s modifier \"%s\"",
85     ambincl ? "include" : "exclude", *amblp);
86     error(WARNING, errmsg);
87     continue;
88     }
89     if (!inset(ambset, obj))
90     insertelem(ambset, obj);
91     }
92     maxarad = thescene.cusize / 2.0; /* maximum radius */
93     /* minimum radius */
94     minarad = ambres > 0 ? thescene.cusize/ambres : 0.0;
95    
96     /* open ambient file */
97     if (afile != NULL)
98     if ((ambfp = fopen(afile, "r+")) != NULL) {
99     while (fread(&amb, sizeof(AMBVAL), 1, ambfp) == 1)
100     avinsert(&amb, &atrunk, thescene.cuorg,
101     thescene.cusize);
102     /* align */
103     fseek(ambfp, -(ftell(ambfp)%sizeof(AMBVAL)), 1);
104     } else if ((ambfp = fopen(afile, "w")) == NULL) {
105     sprintf(errmsg, "cannot open ambient file \"%s\"",
106     afile);
107     error(SYSTEM, errmsg);
108     }
109     }
110    
111    
112     ambient(acol, r) /* compute ambient component for ray */
113     COLOR acol;
114     register RAY *r;
115     {
116     static int rdepth = 0; /* ambient recursion */
117     double wsum;
118    
119     rdepth++; /* increment level */
120    
121     if (ambdiv <= 0) /* no ambient calculation */
122     goto dumbamb;
123     /* check number of bounces */
124     if (rdepth > ambounce)
125     goto dumbamb;
126     /* check ambient list */
127     if (ambincl != -1 && r->ro != NULL &&
128     ambincl != inset(ambset, r->ro->omod))
129     goto dumbamb;
130    
131     if (ambacc <= FTINY) { /* no ambient storage */
132     if (doambient(acol, r) == 0.0)
133     goto dumbamb;
134     goto done;
135     }
136     /* get ambient value */
137     setcolor(acol, 0.0, 0.0, 0.0);
138     wsum = sumambient(acol, r, &atrunk, thescene.cuorg, thescene.cusize);
139     if (wsum > FTINY)
140     scalecolor(acol, 1.0/wsum);
141     else if (makeambient(acol, r) == 0.0)
142     goto dumbamb;
143     goto done;
144    
145     dumbamb: /* return global value */
146     copycolor(acol, ambval);
147     done: /* must finish here! */
148     rdepth--;
149     }
150    
151    
152     double
153     sumambient(acol, r, at, c0, s) /* get interpolated ambient value */
154     COLOR acol;
155     register RAY *r;
156     AMBTREE *at;
157     FVECT c0;
158     double s;
159     {
160     extern double sqrt();
161     double d, e1, e2, wt, wsum;
162     COLOR ct;
163     FVECT ck0;
164     int i;
165     register int j;
166     register AMBVAL *av;
167     /* do this node */
168     wsum = 0.0;
169     for (av = at->alist; av != NULL; av = av->next) {
170     /*
171     * Ray strength test.
172     */
173     if (av->lvl > r->rlvl || av->weight < r->rweight-FTINY)
174     continue;
175     /*
176     * Ambient radius test.
177     */
178     e1 = 0.0;
179     for (j = 0; j < 3; j++) {
180     d = av->pos[j] - r->rop[j];
181     e1 += d * d;
182     }
183     e1 /= av->rad * av->rad;
184     if (e1 > ambacc*ambacc*1.21)
185     continue;
186     /*
187     * Normal direction test.
188     */
189     e2 = (1.0 - DOT(av->dir, r->ron)) * r->rweight;
190     if (e2 < 0.0) e2 = 0.0;
191     if (e1 + e2 > ambacc*ambacc*1.21)
192     continue;
193     /*
194     * Ray behind test.
195     */
196     d = 0.0;
197     for (j = 0; j < 3; j++)
198     d += (r->rop[j] - av->pos[j]) *
199     (av->dir[j] + r->ron[j]);
200     if (d < -minarad)
201     continue;
202     /*
203     * Jittering final test reduces image artifacts.
204     */
205     wt = sqrt(e1) + sqrt(e2);
206     if (wt > ambacc*(0.9 + 0.2*frandom()))
207     continue;
208     if (wt <= 1e-3)
209     wt = 1e3;
210     else
211     wt = 1.0 / wt;
212     wsum += wt;
213     copycolor(ct, av->val);
214     scalecolor(ct, wt);
215     addcolor(acol, ct);
216     }
217     if (at->kid == NULL)
218     return(wsum);
219     /* do children */
220     s *= 0.5;
221     for (i = 0; i < 8; i++) {
222     for (j = 0; j < 3; j++) {
223     ck0[j] = c0[j];
224     if (1<<j & i) {
225     ck0[j] += s;
226     if (r->rop[j] < ck0[j] - OCTSCALE*s)
227     break;
228     } else
229     if (r->rop[j] > ck0[j] + (1.0+OCTSCALE)*s)
230     break;
231     }
232     if (j == 3)
233     wsum += sumambient(acol, r, at->kid+i, ck0, s);
234     }
235     return(wsum);
236     }
237    
238    
239     double
240     makeambient(acol, r) /* make a new ambient value */
241     COLOR acol;
242     register RAY *r;
243     {
244     AMBVAL amb;
245    
246     amb.rad = doambient(acol, r); /* compute ambient */
247     if (amb.rad == 0.0)
248     return(0.0);
249     /* store it */
250     VCOPY(amb.pos, r->rop);
251     VCOPY(amb.dir, r->ron);
252     amb.lvl = r->rlvl;
253     amb.weight = r->rweight;
254     copycolor(amb.val, acol);
255     /* insert into tree */
256     avinsert(&amb, &atrunk, thescene.cuorg, thescene.cusize);
257     avsave(&amb); /* write to file */
258     return(amb.rad);
259     }
260    
261    
262     double
263     doambient(acol, r) /* compute ambient component */
264     COLOR acol;
265     register RAY *r;
266     {
267     extern int ambcmp();
268     extern double sin(), cos(), sqrt();
269     double phi, xd, yd, zd;
270     register AMBSAMP *div;
271     AMBSAMP dnew;
272     RAY ar;
273     FVECT ux, uy;
274     double arad;
275     int ndivs, nt, np, ns, ne, i, j;
276     register int k;
277    
278     setcolor(acol, 0.0, 0.0, 0.0);
279     /* set number of divisions */
280     nt = sqrt(ambdiv * r->rweight * 0.5) + 0.5;
281     np = 2 * nt;
282     ndivs = nt * np;
283     /* check first */
284     if (ndivs == 0 || rayorigin(&ar, r, AMBIENT, 0.5) < 0)
285     return(0.0);
286     /* set number of super-samples */
287     ns = ambssamp * r->rweight + 0.5;
288     if (ns > 0) {
289     div = (AMBSAMP *)malloc(ndivs*sizeof(AMBSAMP));
290     if (div == NULL)
291     error(SYSTEM, "out of memory in doambient");
292     }
293     /* make axes */
294     uy[0] = uy[1] = uy[2] = 0.0;
295     for (k = 0; k < 3; k++)
296     if (r->ron[k] < 0.6 && r->ron[k] > -0.6)
297     break;
298     uy[k] = 1.0;
299     fcross(ux, r->ron, uy);
300     normalize(ux);
301     fcross(uy, ux, r->ron);
302     /* sample divisions */
303     arad = 0.0;
304     ne = 0;
305     for (i = 0; i < nt; i++)
306     for (j = 0; j < np; j++) {
307     rayorigin(&ar, r, AMBIENT, 0.5); /* pretested */
308     zd = sqrt((i+frandom())/nt);
309     phi = 2.0*PI * (j+frandom())/np;
310     xd = cos(phi) * zd;
311     yd = sin(phi) * zd;
312     zd = sqrt(1.0 - zd*zd);
313     for (k = 0; k < 3; k++)
314     ar.rdir[k] = xd*ux[k]+yd*uy[k]+zd*r->ron[k];
315     rayvalue(&ar);
316     if (ar.rot < FHUGE)
317     arad += 1.0 / ar.rot;
318     if (ns > 0) { /* save division */
319     div[ne].k = 0.0;
320     copycolor(div[ne].v, ar.rcol);
321     div[ne].n = 0;
322     div[ne].t = i; div[ne].p = j;
323     /* sum errors */
324     xd = bright(ar.rcol);
325     if (i > 0) { /* from above */
326     yd = bright(div[ne-np].v) - xd;
327     yd *= yd * 0.25;
328     div[ne].k += yd;
329     div[ne].n++;
330     div[ne-np].k += yd;
331     div[ne-np].n++;
332     }
333     if (j > 0) { /* from behind */
334     yd = bright(div[ne-1].v) - xd;
335     yd *= yd * 0.25;
336     div[ne].k += yd;
337     div[ne].n++;
338     div[ne-1].k += yd;
339     div[ne-1].n++;
340     }
341     if (j == np-1) { /* around */
342     yd = bright(div[ne-(np-1)].v) - xd;
343     yd *= yd * 0.25;
344     div[ne].k += yd;
345     div[ne].n++;
346     div[ne-(np-1)].k += yd;
347     div[ne-(np-1)].n++;
348     }
349     ne++;
350     } else
351     addcolor(acol, ar.rcol);
352     }
353     for (k = 0; k < ne; k++) { /* compute errors */
354     if (div[k].n > 1)
355     div[k].k /= div[k].n;
356     div[k].n = 1;
357     }
358     /* sort the divisions */
359     qsort(div, ne, sizeof(AMBSAMP), ambcmp);
360     /* skim excess */
361     while (ne > ns) {
362     ne--;
363     addcolor(acol, div[ne].v);
364     }
365     /* super-sample */
366     for (i = ns; i > 0; i--) {
367     rayorigin(&ar, r, AMBIENT, 0.5); /* pretested */
368     zd = sqrt((div[0].t+frandom())/nt);
369     phi = 2.0*PI * (div[0].p+frandom())/np;
370     xd = cos(phi) * zd;
371     yd = sin(phi) * zd;
372     zd = sqrt(1.0 - zd*zd);
373     for (k = 0; k < 3; k++)
374     ar.rdir[k] = xd*ux[k]+yd*uy[k]+zd*r->ron[k];
375     rayvalue(&ar);
376     if (ar.rot < FHUGE)
377     arad += 1.0 / ar.rot;
378     /* recompute error */
379     copycolor(dnew.v, div[0].v);
380     addcolor(dnew.v, ar.rcol);
381     dnew.n = div[0].n + 1;
382     dnew.t = div[0].t; dnew.p = div[0].p;
383     yd = bright(dnew.v)/dnew.n - bright(ar.rcol);
384     yd = yd*yd + div[0].k*(div[0].n*div[0].n);
385     dnew.k = yd/(dnew.n*dnew.n);
386     /* reinsert */
387     for (k = 0; k < ne-1 && dnew.k < div[k+1].k; k++)
388     bcopy(&div[k+1], &div[k], sizeof(AMBSAMP));
389     bcopy(&dnew, &div[k], sizeof(AMBSAMP));
390    
391     if (ne >= i) { /* extract darkest division */
392     ne--;
393     if (div[ne].n > 1)
394     scalecolor(div[ne].v, 1.0/div[ne].n);
395     addcolor(acol, div[ne].v);
396     }
397     }
398     scalecolor(acol, 1.0/ndivs);
399     if (arad <= FTINY)
400     arad = FHUGE;
401     else
402     arad = (ndivs+ns) / arad / sqrt(r->rweight);
403     if (arad > maxarad)
404     arad = maxarad;
405     else if (arad < minarad)
406     arad = minarad;
407     if (ns > 0)
408     free((char *)div);
409     return(arad);
410     }
411    
412    
413     static int
414     ambcmp(d1, d2) /* decreasing order */
415     AMBSAMP *d1, *d2;
416     {
417     if (d1->k < d2->k)
418     return(1);
419     if (d1->k > d2->k)
420     return(-1);
421     return(0);
422     }
423    
424    
425     static
426     avsave(av) /* save an ambient value */
427     AMBVAL *av;
428     {
429     #ifdef AMBFLUSH
430     static int nunflshed = 0;
431     #endif
432     if (ambfp == NULL)
433     return;
434     if (fwrite(av, sizeof(AMBVAL), 1, ambfp) != 1)
435     goto writerr;
436     #ifdef AMBFLUSH
437     if (++nunflshed >= AMBFLUSH) {
438     if (fflush(ambfp) == EOF)
439     goto writerr;
440     nunflshed = 0;
441     }
442     #endif
443     return;
444     writerr:
445     error(SYSTEM, "error writing ambient file");
446     }
447    
448    
449     static
450     avinsert(aval, at, c0, s) /* insert ambient value in a tree */
451     AMBVAL *aval;
452     register AMBTREE *at;
453     FVECT c0;
454     double s;
455     {
456     FVECT ck0;
457     int branch;
458     register AMBVAL *av;
459     register int i;
460    
461     if ((av = newambval()) == NULL)
462     goto memerr;
463     bcopy(aval, av, sizeof(AMBVAL));
464     VCOPY(ck0, c0);
465     while (s*(OCTSCALE/2) > av->rad*ambacc) {
466     if (at->kid == NULL)
467     if ((at->kid = newambtree()) == NULL)
468     goto memerr;
469     s *= 0.5;
470     branch = 0;
471     for (i = 0; i < 3; i++)
472     if (av->pos[i] > ck0[i] + s) {
473     ck0[i] += s;
474     branch |= 1 << i;
475     }
476     at = at->kid + branch;
477     }
478     av->next = at->alist;
479     at->alist = av;
480     return;
481     memerr:
482     error(SYSTEM, "out of memory in avinsert");
483     }