ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.95
Committed: Fri Apr 19 01:52:50 2024 UTC (2 weeks ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.94: +15 -13 lines
Log Message:
perf: Minor optimization to eliminate memcpy() call

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.94 2024/04/17 17:34:11 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifndef MINADIV
25 #define MINADIV 7 /* minimum # divisions in each dimension */
26 #endif
27
28 typedef struct {
29 FVECT p; /* intersection point */
30 float d; /* reciprocal distance */
31 SCOLOR v; /* hemisphere sample value */
32 } AMBSAMP; /* sample value */
33
34 typedef struct {
35 RAY *rp; /* originating ray sample */
36 int ns; /* number of samples per axis */
37 int sampOK; /* acquired full sample set? */
38 int atyp; /* RAMBIENT or TAMBIENT */
39 SCOLOR acoef; /* division contribution coefficient */
40 SCOLOR acol; /* accumulated color */
41 FVECT onrm; /* oriented unperturbed surface normal */
42 FVECT ux, uy; /* tangent axis unit vectors */
43 AMBSAMP sa[1]; /* sample array (extends struct) */
44 } AMBHEMI; /* ambient sample hemisphere */
45
46 #define AI(h,i,j) ((i)*(h)->ns + (j))
47 #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
48
49 typedef struct {
50 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
51 double I1, I2;
52 } FFTRI; /* vectors and coefficients for Hessian calculation */
53
54
55 static int
56 ambcollision( /* proposed direciton collides? */
57 AMBHEMI *hp,
58 int i,
59 int j,
60 FVECT dv
61 )
62 {
63 double cos_thresh;
64 int ii, jj;
65 /* min. spacing = 1/4th division */
66 cos_thresh = (PI/4.)/(double)hp->ns;
67 cos_thresh = 1. - .5*cos_thresh*cos_thresh;
68 /* check existing neighbors */
69 for (ii = i-1; ii <= i+1; ii++) {
70 if (ii < 0) continue;
71 if (ii >= hp->ns) break;
72 for (jj = j-1; jj <= j+1; jj++) {
73 AMBSAMP *ap;
74 FVECT avec;
75 double dprod;
76 if (jj < 0) continue;
77 if (jj >= hp->ns) break;
78 if ((ii==i) & (jj==j)) continue;
79 ap = &ambsam(hp,ii,jj);
80 if (ap->d <= .5/FHUGE)
81 continue; /* no one home */
82 VSUB(avec, ap->p, hp->rp->rop);
83 dprod = DOT(avec, dv);
84 if (dprod >= cos_thresh*VLEN(avec))
85 return(1); /* collision */
86 }
87 }
88 return(0); /* nothing to worry about */
89 }
90
91
92 static int
93 ambsample( /* initial ambient division sample */
94 AMBHEMI *hp,
95 int i,
96 int j,
97 int n
98 )
99 {
100 AMBSAMP *ap = &ambsam(hp,i,j);
101 RAY ar;
102 int hlist[3], ii;
103 double ss[2];
104 RREAL spt[2];
105 double zd;
106 /* generate hemispherical sample */
107 /* ambient coefficient for weight */
108 if (ambacc > FTINY)
109 setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
110 else
111 copyscolor(ar.rcoef, hp->acoef);
112 if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0)
113 return(0);
114 if (ambacc > FTINY) {
115 smultscolor(ar.rcoef, hp->acoef);
116 scalescolor(ar.rcoef, 1./AVGREFL);
117 }
118 hlist[0] = hp->rp->rno;
119 hlist[1] = AI(hp,i,j);
120 hlist[2] = samplendx;
121 multisamp(ss, 2, urand(ilhash(hlist,3)+n));
122 resample:
123 square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns);
124 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
125 for (ii = 3; ii--; )
126 ar.rdir[ii] = spt[0]*hp->ux[ii] +
127 spt[1]*hp->uy[ii] +
128 zd*hp->onrm[ii];
129 checknorm(ar.rdir);
130 /* avoid coincident samples */
131 if (!n && hp->ns >= 4 && ambcollision(hp, i, j, ar.rdir)) {
132 ss[0] = frandom(); ss[1] = frandom();
133 goto resample; /* reject this sample */
134 }
135 dimlist[ndims++] = AI(hp,i,j) + 90171;
136 rayvalue(&ar); /* evaluate ray */
137 ndims--;
138 zd = raydistance(&ar);
139 if (zd <= FTINY)
140 return(0); /* should never happen */
141 smultscolor(ar.rcol, ar.rcoef); /* apply coefficient */
142 if (zd*ap->d < 1.0) /* new/closer distance? */
143 ap->d = 1.0/zd;
144 if (!n) { /* record first vertex & value */
145 if (zd > 10.0*thescene.cusize + 1000.)
146 zd = 10.0*thescene.cusize + 1000.;
147 VSUM(ap->p, ar.rorg, ar.rdir, zd);
148 copyscolor(ap->v, ar.rcol);
149 } else { /* else update recorded value */
150 sopscolor(hp->acol, -=, ap->v);
151 zd = 1.0/(double)(n+1);
152 scalescolor(ar.rcol, zd);
153 zd *= (double)n;
154 scalescolor(ap->v, zd);
155 saddscolor(ap->v, ar.rcol);
156 }
157 saddscolor(hp->acol, ap->v); /* add to our sum */
158 return(1);
159 }
160
161
162 /* Estimate variance based on ambient division differences */
163 static float *
164 getambdiffs(AMBHEMI *hp)
165 {
166 const double normf = 1./(pbright(hp->acoef) + FTINY);
167 float *earr = (float *)calloc(2*hp->ns*hp->ns, sizeof(float));
168 float *ep;
169 AMBSAMP *ap;
170 double b, b1, d2;
171 int i, j;
172
173 if (earr == NULL) /* out of memory? */
174 return(NULL);
175 /* sum squared neighbor diffs */
176 ap = hp->sa;
177 ep = earr + hp->ns*hp->ns; /* original estimates to scratch */
178 for (i = 0; i < hp->ns; i++)
179 for (j = 0; j < hp->ns; j++, ap++, ep++) {
180 b = pbright(ap[0].v);
181 if (i) { /* from above */
182 b1 = pbright(ap[-hp->ns].v);
183 d2 = b - b1;
184 d2 *= d2*normf/(b + b1 + FTINY);
185 ep[0] += d2;
186 ep[-hp->ns] += d2;
187 }
188 if (!j) continue;
189 /* from behind */
190 b1 = pbright(ap[-1].v);
191 d2 = b - b1;
192 d2 *= d2*normf/(b + b1 + FTINY);
193 ep[0] += d2;
194 ep[-1] += d2;
195 if (!i) continue;
196 /* diagonal */
197 b1 = pbright(ap[-hp->ns-1].v);
198 d2 = b - b1;
199 d2 *= d2*normf/(b + b1 + FTINY);
200 ep[0] += d2;
201 ep[-hp->ns-1] += d2;
202 }
203 /* correct for number of neighbors */
204 ep = earr + hp->ns*hp->ns;
205 ep[0] *= 6./3.;
206 ep[hp->ns-1] *= 6./3.;
207 ep[(hp->ns-1)*hp->ns] *= 6./3.;
208 ep[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.;
209 for (i = 1; i < hp->ns-1; i++) {
210 ep[i*hp->ns] *= 6./5.;
211 ep[i*hp->ns + hp->ns-1] *= 6./5.;
212 }
213 for (j = 1; j < hp->ns-1; j++) {
214 ep[j] *= 6./5.;
215 ep[(hp->ns-1)*hp->ns + j] *= 6./5.;
216 }
217 /* blur final map to reduce bias */
218 for (i = 0; i < hp->ns-1; i++) {
219 float *ep2;
220 ep = earr + i*hp->ns;
221 ep2 = ep + hp->ns*hp->ns;
222 for (j = 0; j < hp->ns-1; j++, ep++, ep2++) {
223 ep[0] += .5*ep2[0] + .125*(ep2[1] + ep2[hp->ns]);
224 ep[1] += .125*ep2[0];
225 ep[hp->ns] += .125*ep2[0];
226 }
227 }
228 return(earr);
229 }
230
231
232 /* Perform super-sampling on hemisphere (introduces bias) */
233 static void
234 ambsupersamp(AMBHEMI *hp, int cnt)
235 {
236 float *earr = getambdiffs(hp);
237 double e2rem = 0;
238 float *ep;
239 int i, j, n, nss;
240
241 if (earr == NULL) /* just skip calc. if no memory */
242 return;
243 /* accumulate estimated variances */
244 for (ep = earr + hp->ns*hp->ns; ep > earr; )
245 e2rem += *--ep;
246 ep = earr; /* perform super-sampling */
247 for (i = 0; i < hp->ns; i++)
248 for (j = 0; j < hp->ns; j++) {
249 if (e2rem <= FTINY)
250 goto done; /* nothing left to do */
251 nss = *ep/e2rem*cnt + frandom();
252 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
253 if (!--cnt) goto done;
254 e2rem -= *ep++; /* update remainder */
255 }
256 done:
257 free(earr);
258 }
259
260
261 static AMBHEMI *
262 samp_hemi( /* sample indirect hemisphere */
263 SCOLOR rcol,
264 RAY *r,
265 double wt
266 )
267 {
268 int backside = (wt < 0);
269 AMBHEMI *hp;
270 double d;
271 int n, i, j;
272 /* insignificance check */
273 d = sintens(rcol);
274 if (d <= FTINY)
275 return(NULL);
276 /* set number of divisions */
277 if (backside) wt = -wt;
278 if (ambacc <= FTINY &&
279 wt > (d *= 0.8*r->rweight/(ambdiv*minweight + 1e-20)))
280 wt = d; /* avoid ray termination */
281 n = sqrt(ambdiv * wt) + 0.5;
282 i = 1 + (MINADIV-1)*(ambacc > FTINY);
283 if (n < i) /* use minimum number of samples? */
284 n = i;
285 /* allocate sampling array */
286 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
287 if (hp == NULL)
288 error(SYSTEM, "out of memory in samp_hemi");
289
290 if (backside) {
291 hp->atyp = TAMBIENT;
292 hp->onrm[0] = -r->ron[0];
293 hp->onrm[1] = -r->ron[1];
294 hp->onrm[2] = -r->ron[2];
295 } else {
296 hp->atyp = RAMBIENT;
297 VCOPY(hp->onrm, r->ron);
298 }
299 hp->rp = r;
300 hp->ns = n;
301 scolorblack(hp->acol);
302 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
303 hp->sampOK = 0;
304 /* assign coefficient */
305 copyscolor(hp->acoef, rcol);
306 d = 1.0/(n*n);
307 scalescolor(hp->acoef, d);
308 /* make tangent plane axes */
309 if (!getperpendicular(hp->ux, hp->onrm, 1))
310 error(CONSISTENCY, "bad ray direction in samp_hemi");
311 VCROSS(hp->uy, hp->onrm, hp->ux);
312 /* sample divisions */
313 for (i = hp->ns; i--; )
314 for (j = hp->ns; j--; )
315 hp->sampOK += ambsample(hp, i, j, 0);
316 copyscolor(rcol, hp->acol);
317 if (!hp->sampOK) { /* utter failure? */
318 free(hp);
319 return(NULL);
320 }
321 if (hp->sampOK < hp->ns*hp->ns) {
322 hp->sampOK *= -1; /* soft failure */
323 return(hp);
324 }
325 if (hp->sampOK <= MINADIV*MINADIV)
326 return(hp); /* don't bother super-sampling */
327 n = ambssamp*wt + 0.5;
328 if (n >= 4*hp->ns) { /* perform super-sampling? */
329 ambsupersamp(hp, n);
330 copyscolor(rcol, hp->acol);
331 }
332 return(hp); /* all is well */
333 }
334
335
336 /* Return brightness of farthest ambient sample */
337 static double
338 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
339 {
340 if (hp->sa[n1].d <= hp->sa[n2].d) {
341 if (hp->sa[n1].d <= hp->sa[n3].d)
342 return(hp->sa[n1].v[0]);
343 return(hp->sa[n3].v[0]);
344 }
345 if (hp->sa[n2].d <= hp->sa[n3].d)
346 return(hp->sa[n2].v[0]);
347 return(hp->sa[n3].v[0]);
348 }
349
350
351 /* Compute vectors and coefficients for Hessian/gradient calcs */
352 static void
353 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
354 {
355 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
356 int ii;
357
358 VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
359 VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
360 VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
361 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
362 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
363 dot_e = DOT(ftp->e_i,ftp->e_i);
364 dot_er = DOT(ftp->e_i, ftp->r_i);
365 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
366 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
367 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
368 sqrt( rdot_cp );
369 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
370 dot_e*ftp->I1 )*0.5*rdot_cp;
371 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
372 for (ii = 3; ii--; )
373 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
374 }
375
376
377 /* Compose 3x3 matrix from two vectors */
378 static void
379 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
380 {
381 mat[0][0] = 2.0*va[0]*vb[0];
382 mat[1][1] = 2.0*va[1]*vb[1];
383 mat[2][2] = 2.0*va[2]*vb[2];
384 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
385 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
386 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
387 }
388
389
390 /* Compute partial 3x3 Hessian matrix for edge */
391 static void
392 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
393 {
394 FVECT ncp;
395 FVECT m1[3], m2[3], m3[3], m4[3];
396 double d1, d2, d3, d4;
397 double I3, J3, K3;
398 int i, j;
399 /* compute intermediate coefficients */
400 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
401 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
402 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
403 d4 = DOT(ftp->e_i, ftp->r_i);
404 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
405 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
406 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
407 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
408 /* intermediate matrices */
409 VCROSS(ncp, nrm, ftp->e_i);
410 compose_matrix(m1, ncp, ftp->rI2_eJ2);
411 compose_matrix(m2, ftp->r_i, ftp->r_i);
412 compose_matrix(m3, ftp->e_i, ftp->e_i);
413 compose_matrix(m4, ftp->r_i, ftp->e_i);
414 d1 = DOT(nrm, ftp->rcp);
415 d2 = -d1*ftp->I2;
416 d1 *= 2.0;
417 for (i = 3; i--; ) /* final matrix sum */
418 for (j = 3; j--; ) {
419 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
420 2.0*J3*m4[i][j] );
421 hess[i][j] += d2*(i==j);
422 hess[i][j] *= -1.0/PI;
423 }
424 }
425
426
427 /* Reverse hessian calculation result for edge in other direction */
428 static void
429 rev_hessian(FVECT hess[3])
430 {
431 int i;
432
433 for (i = 3; i--; ) {
434 hess[i][0] = -hess[i][0];
435 hess[i][1] = -hess[i][1];
436 hess[i][2] = -hess[i][2];
437 }
438 }
439
440
441 /* Add to radiometric Hessian from the given triangle */
442 static void
443 add2hessian(FVECT hess[3], FVECT ehess1[3],
444 FVECT ehess2[3], FVECT ehess3[3], double v)
445 {
446 int i, j;
447
448 for (i = 3; i--; )
449 for (j = 3; j--; )
450 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
451 }
452
453
454 /* Compute partial displacement form factor gradient for edge */
455 static void
456 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
457 {
458 FVECT ncp;
459 double f1;
460 int i;
461
462 f1 = 2.0*DOT(nrm, ftp->rcp);
463 VCROSS(ncp, nrm, ftp->e_i);
464 for (i = 3; i--; )
465 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
466 }
467
468
469 /* Reverse gradient calculation result for edge in other direction */
470 static void
471 rev_gradient(FVECT grad)
472 {
473 grad[0] = -grad[0];
474 grad[1] = -grad[1];
475 grad[2] = -grad[2];
476 }
477
478
479 /* Add to displacement gradient from the given triangle */
480 static void
481 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
482 {
483 int i;
484
485 for (i = 3; i--; )
486 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
487 }
488
489
490 /* Compute anisotropic radii and eigenvector directions */
491 static void
492 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
493 {
494 double hess2[2][2];
495 FVECT a, b;
496 double evalue[2], slope1, xmag1;
497 int i;
498 /* project Hessian to sample plane */
499 for (i = 3; i--; ) {
500 a[i] = DOT(hessian[i], uv[0]);
501 b[i] = DOT(hessian[i], uv[1]);
502 }
503 hess2[0][0] = DOT(uv[0], a);
504 hess2[0][1] = DOT(uv[0], b);
505 hess2[1][0] = DOT(uv[1], a);
506 hess2[1][1] = DOT(uv[1], b);
507 /* compute eigenvalue(s) */
508 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
509 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
510 if (i == 1) /* double-root (circle) */
511 evalue[1] = evalue[0];
512 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
513 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
514 ra[0] = ra[1] = maxarad;
515 return;
516 }
517 if (evalue[0] > evalue[1]) {
518 ra[0] = sqrt(sqrt(4.0/evalue[0]));
519 ra[1] = sqrt(sqrt(4.0/evalue[1]));
520 slope1 = evalue[1];
521 } else {
522 ra[0] = sqrt(sqrt(4.0/evalue[1]));
523 ra[1] = sqrt(sqrt(4.0/evalue[0]));
524 slope1 = evalue[0];
525 }
526 /* compute unit eigenvectors */
527 if (fabs(hess2[0][1]) <= FTINY)
528 return; /* uv OK as is */
529 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
530 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
531 for (i = 3; i--; ) {
532 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
533 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
534 }
535 VCOPY(uv[0], a);
536 VCOPY(uv[1], b);
537 }
538
539
540 static void
541 ambHessian( /* anisotropic radii & pos. gradient */
542 AMBHEMI *hp,
543 FVECT uv[2], /* returned */
544 float ra[2], /* returned (optional) */
545 float pg[2] /* returned (optional) */
546 )
547 {
548 static char memerrmsg[] = "out of memory in ambHessian()";
549 FVECT (*hessrow)[3] = NULL;
550 FVECT *gradrow = NULL;
551 FVECT hessian[3];
552 FVECT gradient;
553 FFTRI fftr;
554 int i, j;
555 /* be sure to assign unit vectors */
556 VCOPY(uv[0], hp->ux);
557 VCOPY(uv[1], hp->uy);
558 /* clock-wise vertex traversal from sample POV */
559 if (ra != NULL) { /* initialize Hessian row buffer */
560 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
561 if (hessrow == NULL)
562 error(SYSTEM, memerrmsg);
563 memset(hessian, 0, sizeof(hessian));
564 } else if (pg == NULL) /* bogus call? */
565 return;
566 if (pg != NULL) { /* initialize form factor row buffer */
567 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
568 if (gradrow == NULL)
569 error(SYSTEM, memerrmsg);
570 memset(gradient, 0, sizeof(gradient));
571 }
572 /* compute first row of edges */
573 for (j = 0; j < hp->ns-1; j++) {
574 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
575 if (hessrow != NULL)
576 comp_hessian(hessrow[j], &fftr, hp->onrm);
577 if (gradrow != NULL)
578 comp_gradient(gradrow[j], &fftr, hp->onrm);
579 }
580 /* sum each row of triangles */
581 for (i = 0; i < hp->ns-1; i++) {
582 FVECT hesscol[3]; /* compute first vertical edge */
583 FVECT gradcol;
584 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
585 if (hessrow != NULL)
586 comp_hessian(hesscol, &fftr, hp->onrm);
587 if (gradrow != NULL)
588 comp_gradient(gradcol, &fftr, hp->onrm);
589 for (j = 0; j < hp->ns-1; j++) {
590 FVECT hessdia[3]; /* compute triangle contributions */
591 FVECT graddia;
592 double backg;
593 backg = back_ambval(hp, AI(hp,i,j),
594 AI(hp,i,j+1), AI(hp,i+1,j));
595 /* diagonal (inner) edge */
596 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
597 if (hessrow != NULL) {
598 comp_hessian(hessdia, &fftr, hp->onrm);
599 rev_hessian(hesscol);
600 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
601 }
602 if (gradrow != NULL) {
603 comp_gradient(graddia, &fftr, hp->onrm);
604 rev_gradient(gradcol);
605 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
606 }
607 /* initialize edge in next row */
608 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
609 if (hessrow != NULL)
610 comp_hessian(hessrow[j], &fftr, hp->onrm);
611 if (gradrow != NULL)
612 comp_gradient(gradrow[j], &fftr, hp->onrm);
613 /* new column edge & paired triangle */
614 backg = back_ambval(hp, AI(hp,i+1,j+1),
615 AI(hp,i+1,j), AI(hp,i,j+1));
616 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
617 if (hessrow != NULL) {
618 comp_hessian(hesscol, &fftr, hp->onrm);
619 rev_hessian(hessdia);
620 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
621 if (i < hp->ns-2)
622 rev_hessian(hessrow[j]);
623 }
624 if (gradrow != NULL) {
625 comp_gradient(gradcol, &fftr, hp->onrm);
626 rev_gradient(graddia);
627 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
628 if (i < hp->ns-2)
629 rev_gradient(gradrow[j]);
630 }
631 }
632 }
633 /* release row buffers */
634 if (hessrow != NULL) free(hessrow);
635 if (gradrow != NULL) free(gradrow);
636
637 if (ra != NULL) /* extract eigenvectors & radii */
638 eigenvectors(uv, ra, hessian);
639 if (pg != NULL) { /* tangential position gradient */
640 pg[0] = DOT(gradient, uv[0]);
641 pg[1] = DOT(gradient, uv[1]);
642 }
643 }
644
645
646 /* Compute direction gradient from a hemispherical sampling */
647 static void
648 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
649 {
650 AMBSAMP *ap;
651 double dgsum[2];
652 int n;
653 FVECT vd;
654 double gfact;
655
656 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
657 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
658 /* use vector for azimuth + 90deg */
659 VSUB(vd, ap->p, hp->rp->rop);
660 /* brightness over cosine factor */
661 gfact = ap->v[0] / DOT(hp->onrm, vd);
662 /* sine = proj_radius/vd_length */
663 dgsum[0] -= DOT(uv[1], vd) * gfact;
664 dgsum[1] += DOT(uv[0], vd) * gfact;
665 }
666 dg[0] = dgsum[0] / (hp->ns*hp->ns);
667 dg[1] = dgsum[1] / (hp->ns*hp->ns);
668 }
669
670
671 /* Compute potential light leak direction flags for cache value */
672 static uint32
673 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
674 {
675 const double max_d = 1.0/(minarad*ambacc + 0.001);
676 const double ang_res = 0.5*PI/hp->ns;
677 const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
678 double avg_d = 0;
679 uint32 flgs = 0;
680 FVECT vec;
681 double u, v;
682 double ang, a1;
683 int i, j;
684 /* don't bother for a few samples */
685 if (hp->ns < 8)
686 return(0);
687 /* check distances overhead */
688 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
689 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
690 avg_d += ambsam(hp,i,j).d;
691 avg_d *= 4.0/(hp->ns*hp->ns);
692 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
693 return(0);
694 if (avg_d >= max_d) /* insurance */
695 return(0);
696 /* else circle around perimeter */
697 for (i = 0; i < hp->ns; i++)
698 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
699 AMBSAMP *ap = &ambsam(hp,i,j);
700 if ((ap->d <= FTINY) | (ap->d >= max_d))
701 continue; /* too far or too near */
702 VSUB(vec, ap->p, hp->rp->rop);
703 u = DOT(vec, uv[0]);
704 v = DOT(vec, uv[1]);
705 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
706 continue; /* occluder outside ellipse */
707 ang = atan2a(v, u); /* else set direction flags */
708 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
709 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
710 }
711 return(flgs);
712 }
713
714
715 int
716 doambient( /* compute ambient component */
717 SCOLOR rcol, /* input/output color */
718 RAY *r,
719 double wt, /* negative for back side */
720 FVECT uv[2], /* returned (optional) */
721 float ra[2], /* returned (optional) */
722 float pg[2], /* returned (optional) */
723 float dg[2], /* returned (optional) */
724 uint32 *crlp /* returned (optional) */
725 )
726 {
727 AMBHEMI *hp = samp_hemi(rcol, r, wt);
728 FVECT my_uv[2];
729 double d, K;
730 AMBSAMP *ap;
731 int i;
732 /* clear return values */
733 if (uv != NULL)
734 memset(uv, 0, sizeof(FVECT)*2);
735 if (ra != NULL)
736 ra[0] = ra[1] = 0.0;
737 if (pg != NULL)
738 pg[0] = pg[1] = 0.0;
739 if (dg != NULL)
740 dg[0] = dg[1] = 0.0;
741 if (crlp != NULL)
742 *crlp = 0;
743 if (hp == NULL) /* sampling falure? */
744 return(0);
745
746 if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
747 (hp->sampOK < 0) | (hp->ns < MINADIV)) {
748 free(hp); /* Hessian not requested/possible */
749 return(-1); /* value-only return value */
750 }
751 if ((d = scolor_mean(rcol)) > FTINY) {
752 d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */
753 K = 0.01;
754 } else { /* or fall back on geometric Hessian */
755 K = 1.0;
756 pg = NULL;
757 dg = NULL;
758 crlp = NULL;
759 }
760 ap = hp->sa; /* single channel from here on... */
761 for (i = hp->ns*hp->ns; i--; ap++)
762 ap->v[0] = scolor_mean(ap->v)*d + K;
763
764 if (uv == NULL) /* make sure we have axis pointers */
765 uv = my_uv;
766 /* compute radii & pos. gradient */
767 ambHessian(hp, uv, ra, pg);
768
769 if (dg != NULL) /* compute direction gradient */
770 ambdirgrad(hp, uv, dg);
771
772 if (ra != NULL) { /* scale/clamp radii */
773 if (pg != NULL) {
774 if (ra[0]*(d = fabs(pg[0])) > 1.0)
775 ra[0] = 1.0/d;
776 if (ra[1]*(d = fabs(pg[1])) > 1.0)
777 ra[1] = 1.0/d;
778 if (ra[0] > ra[1])
779 ra[0] = ra[1];
780 }
781 if (ra[0] < minarad) {
782 ra[0] = minarad;
783 if (ra[1] < minarad)
784 ra[1] = minarad;
785 }
786 ra[0] *= d = 1.0/sqrt(fabs(wt));
787 if ((ra[1] *= d) > 2.0*ra[0])
788 ra[1] = 2.0*ra[0];
789 if (ra[1] > maxarad) {
790 ra[1] = maxarad;
791 if (ra[0] > maxarad)
792 ra[0] = maxarad;
793 }
794 /* flag encroached directions */
795 if (crlp != NULL) /* XXX doesn't update with changes to ambacc */
796 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
797 if (pg != NULL) { /* cap gradient if necessary */
798 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
799 if (d > 1.0) {
800 d = 1.0/sqrt(d);
801 pg[0] *= d;
802 pg[1] *= d;
803 }
804 }
805 }
806 free(hp); /* clean up and return */
807 return(1);
808 }