ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.94
Committed: Wed Apr 17 17:34:11 2024 UTC (4 weeks, 2 days ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.93: +20 -33 lines
Log Message:
fix(rtrace,rpict,rvu,rcontrib): Fixed divide-by-zero and sample initialization for indirect calc

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.93 2024/04/16 23:32:20 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifndef MINADIV
25 #define MINADIV 7 /* minimum # divisions in each dimension */
26 #endif
27
28 typedef struct {
29 FVECT p; /* intersection point */
30 float d; /* reciprocal distance */
31 SCOLOR v; /* hemisphere sample value */
32 } AMBSAMP; /* sample value */
33
34 typedef struct {
35 RAY *rp; /* originating ray sample */
36 int ns; /* number of samples per axis */
37 int sampOK; /* acquired full sample set? */
38 int atyp; /* RAMBIENT or TAMBIENT */
39 SCOLOR acoef; /* division contribution coefficient */
40 SCOLOR acol; /* accumulated color */
41 FVECT onrm; /* oriented unperturbed surface normal */
42 FVECT ux, uy; /* tangent axis unit vectors */
43 AMBSAMP sa[1]; /* sample array (extends struct) */
44 } AMBHEMI; /* ambient sample hemisphere */
45
46 #define AI(h,i,j) ((i)*(h)->ns + (j))
47 #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
48
49 typedef struct {
50 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
51 double I1, I2;
52 } FFTRI; /* vectors and coefficients for Hessian calculation */
53
54
55 static int
56 ambcollision( /* proposed direciton collides? */
57 AMBHEMI *hp,
58 int i,
59 int j,
60 FVECT dv
61 )
62 {
63 double cos_thresh;
64 int ii, jj;
65 /* min. spacing = 1/4th division */
66 cos_thresh = (PI/4.)/(double)hp->ns;
67 cos_thresh = 1. - .5*cos_thresh*cos_thresh;
68 /* check existing neighbors */
69 for (ii = i-1; ii <= i+1; ii++) {
70 if (ii < 0) continue;
71 if (ii >= hp->ns) break;
72 for (jj = j-1; jj <= j+1; jj++) {
73 AMBSAMP *ap;
74 FVECT avec;
75 double dprod;
76 if (jj < 0) continue;
77 if (jj >= hp->ns) break;
78 if ((ii==i) & (jj==j)) continue;
79 ap = &ambsam(hp,ii,jj);
80 if (ap->d <= .5/FHUGE)
81 continue; /* no one home */
82 VSUB(avec, ap->p, hp->rp->rop);
83 dprod = DOT(avec, dv);
84 if (dprod >= cos_thresh*VLEN(avec))
85 return(1); /* collision */
86 }
87 }
88 return(0); /* nothing to worry about */
89 }
90
91
92 static int
93 ambsample( /* initial ambient division sample */
94 AMBHEMI *hp,
95 int i,
96 int j,
97 int n
98 )
99 {
100 AMBSAMP *ap = &ambsam(hp,i,j);
101 RAY ar;
102 int hlist[3], ii;
103 double ss[2];
104 RREAL spt[2];
105 double zd;
106 /* generate hemispherical sample */
107 /* ambient coefficient for weight */
108 if (ambacc > FTINY)
109 setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
110 else
111 copyscolor(ar.rcoef, hp->acoef);
112 if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0)
113 return(0);
114 if (ambacc > FTINY) {
115 smultscolor(ar.rcoef, hp->acoef);
116 scalescolor(ar.rcoef, 1./AVGREFL);
117 }
118 hlist[0] = hp->rp->rno;
119 hlist[1] = AI(hp,i,j);
120 hlist[2] = samplendx;
121 multisamp(ss, 2, urand(ilhash(hlist,3)+n));
122 resample:
123 square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns);
124 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
125 for (ii = 3; ii--; )
126 ar.rdir[ii] = spt[0]*hp->ux[ii] +
127 spt[1]*hp->uy[ii] +
128 zd*hp->onrm[ii];
129 checknorm(ar.rdir);
130 /* avoid coincident samples */
131 if (!n && hp->ns >= 4 && ambcollision(hp, i, j, ar.rdir)) {
132 ss[0] = frandom(); ss[1] = frandom();
133 goto resample; /* reject this sample */
134 }
135 dimlist[ndims++] = AI(hp,i,j) + 90171;
136 rayvalue(&ar); /* evaluate ray */
137 ndims--;
138 zd = raydistance(&ar);
139 if (zd <= FTINY)
140 return(0); /* should never happen */
141 smultscolor(ar.rcol, ar.rcoef); /* apply coefficient */
142 if (zd*ap->d < 1.0) /* new/closer distance? */
143 ap->d = 1.0/zd;
144 if (!n) { /* record first vertex & value */
145 if (zd > 10.0*thescene.cusize + 1000.)
146 zd = 10.0*thescene.cusize + 1000.;
147 VSUM(ap->p, ar.rorg, ar.rdir, zd);
148 copyscolor(ap->v, ar.rcol);
149 } else { /* else update recorded value */
150 sopscolor(hp->acol, -=, ap->v);
151 zd = 1.0/(double)(n+1);
152 scalescolor(ar.rcol, zd);
153 zd *= (double)n;
154 scalescolor(ap->v, zd);
155 saddscolor(ap->v, ar.rcol);
156 }
157 saddscolor(hp->acol, ap->v); /* add to our sum */
158 return(1);
159 }
160
161
162 /* Estimate variance based on ambient division differences */
163 static float *
164 getambdiffs(AMBHEMI *hp)
165 {
166 const double normf = 1./(pbright(hp->acoef) + FTINY);
167 float *earr = (float *)calloc(2*hp->ns*hp->ns, sizeof(float));
168 float *ep;
169 AMBSAMP *ap;
170 double b, b1, d2;
171 int i, j;
172
173 if (earr == NULL) /* out of memory? */
174 return(NULL);
175 /* sum squared neighbor diffs */
176 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
177 for (j = 0; j < hp->ns; j++, ap++, ep++) {
178 b = pbright(ap[0].v);
179 if (i) { /* from above */
180 b1 = pbright(ap[-hp->ns].v);
181 d2 = b - b1;
182 d2 *= d2*normf/(b + b1 + FTINY);
183 ep[0] += d2;
184 ep[-hp->ns] += d2;
185 }
186 if (!j) continue;
187 /* from behind */
188 b1 = pbright(ap[-1].v);
189 d2 = b - b1;
190 d2 *= d2*normf/(b + b1 + FTINY);
191 ep[0] += d2;
192 ep[-1] += d2;
193 if (!i) continue;
194 /* diagonal */
195 b1 = pbright(ap[-hp->ns-1].v);
196 d2 = b - b1;
197 d2 *= d2*normf/(b + b1 + FTINY);
198 ep[0] += d2;
199 ep[-hp->ns-1] += d2;
200 }
201 /* correct for number of neighbors */
202 earr[0] *= 6./3.;
203 earr[hp->ns-1] *= 6./3.;
204 earr[(hp->ns-1)*hp->ns] *= 6./3.;
205 earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.;
206 for (i = 1; i < hp->ns-1; i++) {
207 earr[i*hp->ns] *= 6./5.;
208 earr[i*hp->ns + hp->ns-1] *= 6./5.;
209 }
210 for (j = 1; j < hp->ns-1; j++) {
211 earr[j] *= 6./5.;
212 earr[(hp->ns-1)*hp->ns + j] *= 6./5.;
213 }
214 /* blur map to reduce bias */
215 memcpy(earr+hp->ns*hp->ns, earr, hp->ns*hp->ns*sizeof(float));
216 for (i = 0; i < hp->ns-1; i++) {
217 float *ep2;
218 ep = earr + i*hp->ns;
219 ep2 = ep + hp->ns*hp->ns;
220 for (j = 0; j < hp->ns-1; j++, ep++, ep2++) {
221 ep[0] += .125*(ep2[1] + ep2[hp->ns]) - .5*ep2[0];
222 ep[1] += .125*ep2[0];
223 ep[hp->ns] += .125*ep2[0];
224 }
225 }
226 return(earr);
227 }
228
229
230 /* Perform super-sampling on hemisphere (introduces bias) */
231 static void
232 ambsupersamp(AMBHEMI *hp, int cnt)
233 {
234 float *earr = getambdiffs(hp);
235 double e2rem = 0;
236 float *ep;
237 int i, j, n, nss;
238
239 if (earr == NULL) /* just skip calc. if no memory */
240 return;
241 /* accumulate estimated variances */
242 for (ep = earr + hp->ns*hp->ns; ep > earr; )
243 e2rem += *--ep;
244 ep = earr; /* perform super-sampling */
245 for (i = 0; i < hp->ns; i++)
246 for (j = 0; j < hp->ns; j++) {
247 if (e2rem <= FTINY)
248 goto done; /* nothing left to do */
249 nss = *ep/e2rem*cnt + frandom();
250 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
251 if (!--cnt) goto done;
252 e2rem -= *ep++; /* update remainder */
253 }
254 done:
255 free(earr);
256 }
257
258
259 static AMBHEMI *
260 samp_hemi( /* sample indirect hemisphere */
261 SCOLOR rcol,
262 RAY *r,
263 double wt
264 )
265 {
266 int backside = (wt < 0);
267 AMBHEMI *hp;
268 double d;
269 int n, i, j;
270 /* insignificance check */
271 d = sintens(rcol);
272 if (d <= FTINY)
273 return(NULL);
274 /* set number of divisions */
275 if (backside) wt = -wt;
276 if (ambacc <= FTINY &&
277 wt > (d *= 0.8*r->rweight/(ambdiv*minweight + 1e-20)))
278 wt = d; /* avoid ray termination */
279 n = sqrt(ambdiv * wt) + 0.5;
280 i = 1 + (MINADIV-1)*(ambacc > FTINY);
281 if (n < i) /* use minimum number of samples? */
282 n = i;
283 /* allocate sampling array */
284 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
285 if (hp == NULL)
286 error(SYSTEM, "out of memory in samp_hemi");
287
288 if (backside) {
289 hp->atyp = TAMBIENT;
290 hp->onrm[0] = -r->ron[0];
291 hp->onrm[1] = -r->ron[1];
292 hp->onrm[2] = -r->ron[2];
293 } else {
294 hp->atyp = RAMBIENT;
295 VCOPY(hp->onrm, r->ron);
296 }
297 hp->rp = r;
298 hp->ns = n;
299 scolorblack(hp->acol);
300 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
301 hp->sampOK = 0;
302 /* assign coefficient */
303 copyscolor(hp->acoef, rcol);
304 d = 1.0/(n*n);
305 scalescolor(hp->acoef, d);
306 /* make tangent plane axes */
307 if (!getperpendicular(hp->ux, hp->onrm, 1))
308 error(CONSISTENCY, "bad ray direction in samp_hemi");
309 VCROSS(hp->uy, hp->onrm, hp->ux);
310 /* sample divisions */
311 for (i = hp->ns; i--; )
312 for (j = hp->ns; j--; )
313 hp->sampOK += ambsample(hp, i, j, 0);
314 copyscolor(rcol, hp->acol);
315 if (!hp->sampOK) { /* utter failure? */
316 free(hp);
317 return(NULL);
318 }
319 if (hp->sampOK < hp->ns*hp->ns) {
320 hp->sampOK *= -1; /* soft failure */
321 return(hp);
322 }
323 if (hp->sampOK <= MINADIV*MINADIV)
324 return(hp); /* don't bother super-sampling */
325 n = ambssamp*wt + 0.5;
326 if (n >= 4*hp->ns) { /* perform super-sampling? */
327 ambsupersamp(hp, n);
328 copyscolor(rcol, hp->acol);
329 }
330 return(hp); /* all is well */
331 }
332
333
334 /* Return brightness of farthest ambient sample */
335 static double
336 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
337 {
338 if (hp->sa[n1].d <= hp->sa[n2].d) {
339 if (hp->sa[n1].d <= hp->sa[n3].d)
340 return(hp->sa[n1].v[0]);
341 return(hp->sa[n3].v[0]);
342 }
343 if (hp->sa[n2].d <= hp->sa[n3].d)
344 return(hp->sa[n2].v[0]);
345 return(hp->sa[n3].v[0]);
346 }
347
348
349 /* Compute vectors and coefficients for Hessian/gradient calcs */
350 static void
351 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
352 {
353 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
354 int ii;
355
356 VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
357 VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
358 VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
359 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
360 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
361 dot_e = DOT(ftp->e_i,ftp->e_i);
362 dot_er = DOT(ftp->e_i, ftp->r_i);
363 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
364 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
365 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
366 sqrt( rdot_cp );
367 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
368 dot_e*ftp->I1 )*0.5*rdot_cp;
369 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
370 for (ii = 3; ii--; )
371 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
372 }
373
374
375 /* Compose 3x3 matrix from two vectors */
376 static void
377 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
378 {
379 mat[0][0] = 2.0*va[0]*vb[0];
380 mat[1][1] = 2.0*va[1]*vb[1];
381 mat[2][2] = 2.0*va[2]*vb[2];
382 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
383 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
384 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
385 }
386
387
388 /* Compute partial 3x3 Hessian matrix for edge */
389 static void
390 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
391 {
392 FVECT ncp;
393 FVECT m1[3], m2[3], m3[3], m4[3];
394 double d1, d2, d3, d4;
395 double I3, J3, K3;
396 int i, j;
397 /* compute intermediate coefficients */
398 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
399 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
400 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
401 d4 = DOT(ftp->e_i, ftp->r_i);
402 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
403 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
404 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
405 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
406 /* intermediate matrices */
407 VCROSS(ncp, nrm, ftp->e_i);
408 compose_matrix(m1, ncp, ftp->rI2_eJ2);
409 compose_matrix(m2, ftp->r_i, ftp->r_i);
410 compose_matrix(m3, ftp->e_i, ftp->e_i);
411 compose_matrix(m4, ftp->r_i, ftp->e_i);
412 d1 = DOT(nrm, ftp->rcp);
413 d2 = -d1*ftp->I2;
414 d1 *= 2.0;
415 for (i = 3; i--; ) /* final matrix sum */
416 for (j = 3; j--; ) {
417 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
418 2.0*J3*m4[i][j] );
419 hess[i][j] += d2*(i==j);
420 hess[i][j] *= -1.0/PI;
421 }
422 }
423
424
425 /* Reverse hessian calculation result for edge in other direction */
426 static void
427 rev_hessian(FVECT hess[3])
428 {
429 int i;
430
431 for (i = 3; i--; ) {
432 hess[i][0] = -hess[i][0];
433 hess[i][1] = -hess[i][1];
434 hess[i][2] = -hess[i][2];
435 }
436 }
437
438
439 /* Add to radiometric Hessian from the given triangle */
440 static void
441 add2hessian(FVECT hess[3], FVECT ehess1[3],
442 FVECT ehess2[3], FVECT ehess3[3], double v)
443 {
444 int i, j;
445
446 for (i = 3; i--; )
447 for (j = 3; j--; )
448 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
449 }
450
451
452 /* Compute partial displacement form factor gradient for edge */
453 static void
454 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
455 {
456 FVECT ncp;
457 double f1;
458 int i;
459
460 f1 = 2.0*DOT(nrm, ftp->rcp);
461 VCROSS(ncp, nrm, ftp->e_i);
462 for (i = 3; i--; )
463 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
464 }
465
466
467 /* Reverse gradient calculation result for edge in other direction */
468 static void
469 rev_gradient(FVECT grad)
470 {
471 grad[0] = -grad[0];
472 grad[1] = -grad[1];
473 grad[2] = -grad[2];
474 }
475
476
477 /* Add to displacement gradient from the given triangle */
478 static void
479 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
480 {
481 int i;
482
483 for (i = 3; i--; )
484 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
485 }
486
487
488 /* Compute anisotropic radii and eigenvector directions */
489 static void
490 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
491 {
492 double hess2[2][2];
493 FVECT a, b;
494 double evalue[2], slope1, xmag1;
495 int i;
496 /* project Hessian to sample plane */
497 for (i = 3; i--; ) {
498 a[i] = DOT(hessian[i], uv[0]);
499 b[i] = DOT(hessian[i], uv[1]);
500 }
501 hess2[0][0] = DOT(uv[0], a);
502 hess2[0][1] = DOT(uv[0], b);
503 hess2[1][0] = DOT(uv[1], a);
504 hess2[1][1] = DOT(uv[1], b);
505 /* compute eigenvalue(s) */
506 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
507 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
508 if (i == 1) /* double-root (circle) */
509 evalue[1] = evalue[0];
510 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
511 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
512 ra[0] = ra[1] = maxarad;
513 return;
514 }
515 if (evalue[0] > evalue[1]) {
516 ra[0] = sqrt(sqrt(4.0/evalue[0]));
517 ra[1] = sqrt(sqrt(4.0/evalue[1]));
518 slope1 = evalue[1];
519 } else {
520 ra[0] = sqrt(sqrt(4.0/evalue[1]));
521 ra[1] = sqrt(sqrt(4.0/evalue[0]));
522 slope1 = evalue[0];
523 }
524 /* compute unit eigenvectors */
525 if (fabs(hess2[0][1]) <= FTINY)
526 return; /* uv OK as is */
527 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
528 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
529 for (i = 3; i--; ) {
530 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
531 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
532 }
533 VCOPY(uv[0], a);
534 VCOPY(uv[1], b);
535 }
536
537
538 static void
539 ambHessian( /* anisotropic radii & pos. gradient */
540 AMBHEMI *hp,
541 FVECT uv[2], /* returned */
542 float ra[2], /* returned (optional) */
543 float pg[2] /* returned (optional) */
544 )
545 {
546 static char memerrmsg[] = "out of memory in ambHessian()";
547 FVECT (*hessrow)[3] = NULL;
548 FVECT *gradrow = NULL;
549 FVECT hessian[3];
550 FVECT gradient;
551 FFTRI fftr;
552 int i, j;
553 /* be sure to assign unit vectors */
554 VCOPY(uv[0], hp->ux);
555 VCOPY(uv[1], hp->uy);
556 /* clock-wise vertex traversal from sample POV */
557 if (ra != NULL) { /* initialize Hessian row buffer */
558 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
559 if (hessrow == NULL)
560 error(SYSTEM, memerrmsg);
561 memset(hessian, 0, sizeof(hessian));
562 } else if (pg == NULL) /* bogus call? */
563 return;
564 if (pg != NULL) { /* initialize form factor row buffer */
565 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
566 if (gradrow == NULL)
567 error(SYSTEM, memerrmsg);
568 memset(gradient, 0, sizeof(gradient));
569 }
570 /* compute first row of edges */
571 for (j = 0; j < hp->ns-1; j++) {
572 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
573 if (hessrow != NULL)
574 comp_hessian(hessrow[j], &fftr, hp->onrm);
575 if (gradrow != NULL)
576 comp_gradient(gradrow[j], &fftr, hp->onrm);
577 }
578 /* sum each row of triangles */
579 for (i = 0; i < hp->ns-1; i++) {
580 FVECT hesscol[3]; /* compute first vertical edge */
581 FVECT gradcol;
582 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
583 if (hessrow != NULL)
584 comp_hessian(hesscol, &fftr, hp->onrm);
585 if (gradrow != NULL)
586 comp_gradient(gradcol, &fftr, hp->onrm);
587 for (j = 0; j < hp->ns-1; j++) {
588 FVECT hessdia[3]; /* compute triangle contributions */
589 FVECT graddia;
590 double backg;
591 backg = back_ambval(hp, AI(hp,i,j),
592 AI(hp,i,j+1), AI(hp,i+1,j));
593 /* diagonal (inner) edge */
594 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
595 if (hessrow != NULL) {
596 comp_hessian(hessdia, &fftr, hp->onrm);
597 rev_hessian(hesscol);
598 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
599 }
600 if (gradrow != NULL) {
601 comp_gradient(graddia, &fftr, hp->onrm);
602 rev_gradient(gradcol);
603 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
604 }
605 /* initialize edge in next row */
606 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
607 if (hessrow != NULL)
608 comp_hessian(hessrow[j], &fftr, hp->onrm);
609 if (gradrow != NULL)
610 comp_gradient(gradrow[j], &fftr, hp->onrm);
611 /* new column edge & paired triangle */
612 backg = back_ambval(hp, AI(hp,i+1,j+1),
613 AI(hp,i+1,j), AI(hp,i,j+1));
614 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
615 if (hessrow != NULL) {
616 comp_hessian(hesscol, &fftr, hp->onrm);
617 rev_hessian(hessdia);
618 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
619 if (i < hp->ns-2)
620 rev_hessian(hessrow[j]);
621 }
622 if (gradrow != NULL) {
623 comp_gradient(gradcol, &fftr, hp->onrm);
624 rev_gradient(graddia);
625 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
626 if (i < hp->ns-2)
627 rev_gradient(gradrow[j]);
628 }
629 }
630 }
631 /* release row buffers */
632 if (hessrow != NULL) free(hessrow);
633 if (gradrow != NULL) free(gradrow);
634
635 if (ra != NULL) /* extract eigenvectors & radii */
636 eigenvectors(uv, ra, hessian);
637 if (pg != NULL) { /* tangential position gradient */
638 pg[0] = DOT(gradient, uv[0]);
639 pg[1] = DOT(gradient, uv[1]);
640 }
641 }
642
643
644 /* Compute direction gradient from a hemispherical sampling */
645 static void
646 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
647 {
648 AMBSAMP *ap;
649 double dgsum[2];
650 int n;
651 FVECT vd;
652 double gfact;
653
654 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
655 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
656 /* use vector for azimuth + 90deg */
657 VSUB(vd, ap->p, hp->rp->rop);
658 /* brightness over cosine factor */
659 gfact = ap->v[0] / DOT(hp->onrm, vd);
660 /* sine = proj_radius/vd_length */
661 dgsum[0] -= DOT(uv[1], vd) * gfact;
662 dgsum[1] += DOT(uv[0], vd) * gfact;
663 }
664 dg[0] = dgsum[0] / (hp->ns*hp->ns);
665 dg[1] = dgsum[1] / (hp->ns*hp->ns);
666 }
667
668
669 /* Compute potential light leak direction flags for cache value */
670 static uint32
671 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
672 {
673 const double max_d = 1.0/(minarad*ambacc + 0.001);
674 const double ang_res = 0.5*PI/hp->ns;
675 const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
676 double avg_d = 0;
677 uint32 flgs = 0;
678 FVECT vec;
679 double u, v;
680 double ang, a1;
681 int i, j;
682 /* don't bother for a few samples */
683 if (hp->ns < 8)
684 return(0);
685 /* check distances overhead */
686 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
687 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
688 avg_d += ambsam(hp,i,j).d;
689 avg_d *= 4.0/(hp->ns*hp->ns);
690 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
691 return(0);
692 if (avg_d >= max_d) /* insurance */
693 return(0);
694 /* else circle around perimeter */
695 for (i = 0; i < hp->ns; i++)
696 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
697 AMBSAMP *ap = &ambsam(hp,i,j);
698 if ((ap->d <= FTINY) | (ap->d >= max_d))
699 continue; /* too far or too near */
700 VSUB(vec, ap->p, hp->rp->rop);
701 u = DOT(vec, uv[0]);
702 v = DOT(vec, uv[1]);
703 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
704 continue; /* occluder outside ellipse */
705 ang = atan2a(v, u); /* else set direction flags */
706 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
707 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
708 }
709 return(flgs);
710 }
711
712
713 int
714 doambient( /* compute ambient component */
715 SCOLOR rcol, /* input/output color */
716 RAY *r,
717 double wt, /* negative for back side */
718 FVECT uv[2], /* returned (optional) */
719 float ra[2], /* returned (optional) */
720 float pg[2], /* returned (optional) */
721 float dg[2], /* returned (optional) */
722 uint32 *crlp /* returned (optional) */
723 )
724 {
725 AMBHEMI *hp = samp_hemi(rcol, r, wt);
726 FVECT my_uv[2];
727 double d, K;
728 AMBSAMP *ap;
729 int i;
730 /* clear return values */
731 if (uv != NULL)
732 memset(uv, 0, sizeof(FVECT)*2);
733 if (ra != NULL)
734 ra[0] = ra[1] = 0.0;
735 if (pg != NULL)
736 pg[0] = pg[1] = 0.0;
737 if (dg != NULL)
738 dg[0] = dg[1] = 0.0;
739 if (crlp != NULL)
740 *crlp = 0;
741 if (hp == NULL) /* sampling falure? */
742 return(0);
743
744 if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
745 (hp->sampOK < 0) | (hp->ns < MINADIV)) {
746 free(hp); /* Hessian not requested/possible */
747 return(-1); /* value-only return value */
748 }
749 if ((d = scolor_mean(rcol)) > FTINY) {
750 d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */
751 K = 0.01;
752 } else { /* or fall back on geometric Hessian */
753 K = 1.0;
754 pg = NULL;
755 dg = NULL;
756 crlp = NULL;
757 }
758 ap = hp->sa; /* single channel from here on... */
759 for (i = hp->ns*hp->ns; i--; ap++)
760 ap->v[0] = scolor_mean(ap->v)*d + K;
761
762 if (uv == NULL) /* make sure we have axis pointers */
763 uv = my_uv;
764 /* compute radii & pos. gradient */
765 ambHessian(hp, uv, ra, pg);
766
767 if (dg != NULL) /* compute direction gradient */
768 ambdirgrad(hp, uv, dg);
769
770 if (ra != NULL) { /* scale/clamp radii */
771 if (pg != NULL) {
772 if (ra[0]*(d = fabs(pg[0])) > 1.0)
773 ra[0] = 1.0/d;
774 if (ra[1]*(d = fabs(pg[1])) > 1.0)
775 ra[1] = 1.0/d;
776 if (ra[0] > ra[1])
777 ra[0] = ra[1];
778 }
779 if (ra[0] < minarad) {
780 ra[0] = minarad;
781 if (ra[1] < minarad)
782 ra[1] = minarad;
783 }
784 ra[0] *= d = 1.0/sqrt(fabs(wt));
785 if ((ra[1] *= d) > 2.0*ra[0])
786 ra[1] = 2.0*ra[0];
787 if (ra[1] > maxarad) {
788 ra[1] = maxarad;
789 if (ra[0] > maxarad)
790 ra[0] = maxarad;
791 }
792 /* flag encroached directions */
793 if (crlp != NULL) /* XXX doesn't update with changes to ambacc */
794 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
795 if (pg != NULL) { /* cap gradient if necessary */
796 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
797 if (d > 1.0) {
798 d = 1.0/sqrt(d);
799 pg[0] *= d;
800 pg[1] *= d;
801 }
802 }
803 }
804 free(hp); /* clean up and return */
805 return(1);
806 }