ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.93
Committed: Tue Apr 16 23:32:20 2024 UTC (12 months, 2 weeks ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.92: +37 -11 lines
Log Message:
perf(rpict,rtrace,rvu): Improved ambient sampling (-as) to reduce bias

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.92 2024/04/05 01:10:26 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifndef MINADIV
25 #define MINADIV 7 /* minimum # divisions in each dimension */
26 #endif
27
28 typedef struct {
29 FVECT p; /* intersection point */
30 float d; /* reciprocal distance */
31 SCOLOR v; /* hemisphere sample value */
32 } AMBSAMP; /* sample value */
33
34 typedef struct {
35 RAY *rp; /* originating ray sample */
36 int ns; /* number of samples per axis */
37 int sampOK; /* acquired full sample set? */
38 int atyp; /* RAMBIENT or TAMBIENT */
39 SCOLOR acoef; /* division contribution coefficient */
40 SCOLOR acol; /* accumulated color */
41 FVECT onrm; /* oriented unperturbed surface normal */
42 FVECT ux, uy; /* tangent axis unit vectors */
43 AMBSAMP sa[1]; /* sample array (extends struct) */
44 } AMBHEMI; /* ambient sample hemisphere */
45
46 #define AI(h,i,j) ((i)*(h)->ns + (j))
47 #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
48
49 typedef struct {
50 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
51 double I1, I2;
52 } FFTRI; /* vectors and coefficients for Hessian calculation */
53
54
55 static int
56 ambcollision( /* proposed direciton collides? */
57 AMBHEMI *hp,
58 int i,
59 int j,
60 FVECT dv
61 )
62 {
63 double cos_thresh;
64 int ii, jj;
65 /* min. spacing = 1/4th division */
66 cos_thresh = (PI/4.)/(double)hp->ns;
67 cos_thresh = 1. - .5*cos_thresh*cos_thresh;
68 /* check existing neighbors */
69 for (ii = i-1; ii <= i+1; ii++) {
70 if (ii < 0) continue;
71 if (ii >= hp->ns) break;
72 for (jj = j-1; jj <= j+1; jj++) {
73 AMBSAMP *ap;
74 FVECT avec;
75 double dprod;
76 if (jj < 0) continue;
77 if (jj >= hp->ns) break;
78 if ((ii==i) & (jj==j)) continue;
79 ap = &ambsam(hp,ii,jj);
80 if (ap->d <= .5/FHUGE)
81 continue; /* no one home */
82 VSUB(avec, ap->p, hp->rp->rop);
83 dprod = DOT(avec, dv);
84 if (dprod >= cos_thresh*VLEN(avec))
85 return(1); /* collision */
86 }
87 }
88 return(0); /* nothing to worry about */
89 }
90
91
92 static int
93 ambsample( /* initial ambient division sample */
94 AMBHEMI *hp,
95 int i,
96 int j,
97 int n
98 )
99 {
100 AMBSAMP *ap = &ambsam(hp,i,j);
101 RAY ar;
102 int hlist[3], ii;
103 RREAL spt[2];
104 double zd;
105 /* generate hemispherical sample */
106 /* ambient coefficient for weight */
107 if (ambacc > FTINY)
108 setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
109 else
110 copyscolor(ar.rcoef, hp->acoef);
111 if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0)
112 return(0);
113 if (ambacc > FTINY) {
114 smultscolor(ar.rcoef, hp->acoef);
115 scalescolor(ar.rcoef, 1./AVGREFL);
116 }
117 hlist[0] = hp->rp->rno;
118 hlist[1] = j;
119 hlist[2] = i;
120 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
121 resample:
122 square2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
123 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
124 for (ii = 3; ii--; )
125 ar.rdir[ii] = spt[0]*hp->ux[ii] +
126 spt[1]*hp->uy[ii] +
127 zd*hp->onrm[ii];
128 checknorm(ar.rdir);
129 /* avoid coincident samples */
130 if (!n && ambcollision(hp, i, j, ar.rdir)) {
131 spt[0] = frandom(); spt[1] = frandom();
132 goto resample; /* reject this sample */
133 }
134 dimlist[ndims++] = AI(hp,i,j) + 90171;
135 rayvalue(&ar); /* evaluate ray */
136 ndims--;
137 zd = raydistance(&ar);
138 if (zd <= FTINY)
139 return(0); /* should never happen */
140 smultscolor(ar.rcol, ar.rcoef); /* apply coefficient */
141 if (zd*ap->d < 1.0) /* new/closer distance? */
142 ap->d = 1.0/zd;
143 if (!n) { /* record first vertex & value */
144 if (zd > 10.0*thescene.cusize + 1000.)
145 zd = 10.0*thescene.cusize + 1000.;
146 VSUM(ap->p, ar.rorg, ar.rdir, zd);
147 copyscolor(ap->v, ar.rcol);
148 } else { /* else update recorded value */
149 sopscolor(hp->acol, -=, ap->v);
150 zd = 1.0/(double)(n+1);
151 scalescolor(ar.rcol, zd);
152 zd *= (double)n;
153 scalescolor(ap->v, zd);
154 saddscolor(ap->v, ar.rcol);
155 }
156 saddscolor(hp->acol, ap->v); /* add to our sum */
157 return(1);
158 }
159
160
161 /* Estimate variance based on ambient division differences */
162 static float *
163 getambdiffs(AMBHEMI *hp)
164 {
165 const double normf = 1./(pbright(hp->acoef) + FTINY);
166 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
167 float *ep, *earr2;
168 AMBSAMP *ap;
169 double b, b1, d2;
170 int i, j;
171
172 if (earr == NULL) /* out of memory? */
173 return(NULL);
174 /* sum squared neighbor diffs */
175 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
176 for (j = 0; j < hp->ns; j++, ap++, ep++) {
177 b = pbright(ap[0].v);
178 if (i) { /* from above */
179 b1 = pbright(ap[-hp->ns].v);
180 d2 = b - b1;
181 d2 *= d2*normf/(b + b1 + FTINY);
182 ep[0] += d2;
183 ep[-hp->ns] += d2;
184 }
185 if (!j) continue;
186 /* from behind */
187 b1 = pbright(ap[-1].v);
188 d2 = b - b1;
189 d2 *= d2*normf/(b + b1 + FTINY);
190 ep[0] += d2;
191 ep[-1] += d2;
192 if (!i) continue;
193 /* diagonal */
194 b1 = pbright(ap[-hp->ns-1].v);
195 d2 = b - b1;
196 d2 *= d2*normf/(b + b1 + FTINY);
197 ep[0] += d2;
198 ep[-hp->ns-1] += d2;
199 }
200 /* correct for number of neighbors */
201 earr[0] *= 6./3.;
202 earr[hp->ns-1] *= 6./3.;
203 earr[(hp->ns-1)*hp->ns] *= 6./3.;
204 earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.;
205 for (i = 1; i < hp->ns-1; i++) {
206 earr[i*hp->ns] *= 6./5.;
207 earr[i*hp->ns + hp->ns-1] *= 6./5.;
208 }
209 for (j = 1; j < hp->ns-1; j++) {
210 earr[j] *= 6./5.;
211 earr[(hp->ns-1)*hp->ns + j] *= 6./5.;
212 }
213 /* preen map to avoid cliffs */
214 earr2 = (float *)malloc(hp->ns*hp->ns*sizeof(float));
215 if (earr2 == NULL)
216 return(earr);
217 memcpy(earr2, earr, hp->ns*hp->ns*sizeof(float));
218 for (i = 0; i < hp->ns-1; i++) {
219 float *ep2 = earr2 + i*hp->ns;
220 ep = earr + i*hp->ns;
221 for (j = 0; j < hp->ns-1; j++, ep2++, ep++) {
222 if (ep2[1] < .5*ep2[0]) {
223 ep[0] -= .125*ep2[0];
224 ep[1] += .125*ep2[0];
225 } else if (ep2[1] > 2.*ep2[0]) {
226 ep[1] -= .125*ep2[1];
227 ep[0] += .125*ep2[1];
228 }
229 if (ep2[hp->ns] < .5*ep2[0]) {
230 ep[0] -= .125*ep2[0];
231 ep[hp->ns] += .125*ep2[0];
232 } else if (ep2[hp->ns] > 2.*ep2[0]) {
233 ep[hp->ns] -= .125*ep2[hp->ns];
234 ep[0] += .125*ep2[hp->ns];
235 }
236 }
237 }
238 free(earr2);
239 return(earr);
240 }
241
242
243 /* Perform super-sampling on hemisphere (introduces bias) */
244 static void
245 ambsupersamp(AMBHEMI *hp, int cnt)
246 {
247 float *earr = getambdiffs(hp);
248 double e2rem = 0;
249 float *ep;
250 int i, j, n, nss;
251
252 if (earr == NULL) /* just skip calc. if no memory */
253 return;
254 /* accumulate estimated variances */
255 for (ep = earr + hp->ns*hp->ns; ep > earr; )
256 e2rem += *--ep;
257 ep = earr; /* perform super-sampling */
258 for (i = 0; i < hp->ns; i++)
259 for (j = 0; j < hp->ns; j++) {
260 if (e2rem <= FTINY)
261 goto done; /* nothing left to do */
262 nss = *ep/e2rem*cnt + frandom();
263 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
264 if (!--cnt) goto done;
265 e2rem -= *ep++; /* update remainder */
266 }
267 done:
268 free(earr);
269 }
270
271
272 static AMBHEMI *
273 samp_hemi( /* sample indirect hemisphere */
274 SCOLOR rcol,
275 RAY *r,
276 double wt
277 )
278 {
279 int backside = (wt < 0);
280 AMBHEMI *hp;
281 double d;
282 int n, i, j;
283 /* insignificance check */
284 d = sintens(rcol);
285 if (d <= FTINY)
286 return(NULL);
287 /* set number of divisions */
288 if (backside) wt = -wt;
289 if (ambacc <= FTINY &&
290 wt > (d *= 0.8*r->rweight/(ambdiv*minweight)))
291 wt = d; /* avoid ray termination */
292 n = sqrt(ambdiv * wt) + 0.5;
293 i = 1 + (MINADIV-1)*(ambacc > FTINY);
294 if (n < i) /* use minimum number of samples? */
295 n = i;
296 /* allocate sampling array */
297 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
298 if (hp == NULL)
299 error(SYSTEM, "out of memory in samp_hemi");
300
301 if (backside) {
302 hp->atyp = TAMBIENT;
303 hp->onrm[0] = -r->ron[0];
304 hp->onrm[1] = -r->ron[1];
305 hp->onrm[2] = -r->ron[2];
306 } else {
307 hp->atyp = RAMBIENT;
308 VCOPY(hp->onrm, r->ron);
309 }
310 hp->rp = r;
311 hp->ns = n;
312 scolorblack(hp->acol);
313 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
314 hp->sampOK = 0;
315 /* assign coefficient */
316 copyscolor(hp->acoef, rcol);
317 d = 1.0/(n*n);
318 scalescolor(hp->acoef, d);
319 /* make tangent plane axes */
320 if (!getperpendicular(hp->ux, hp->onrm, 1))
321 error(CONSISTENCY, "bad ray direction in samp_hemi");
322 VCROSS(hp->uy, hp->onrm, hp->ux);
323 /* sample divisions */
324 for (i = hp->ns; i--; )
325 for (j = hp->ns; j--; )
326 hp->sampOK += ambsample(hp, i, j, 0);
327 copyscolor(rcol, hp->acol);
328 if (!hp->sampOK) { /* utter failure? */
329 free(hp);
330 return(NULL);
331 }
332 if (hp->sampOK < hp->ns*hp->ns) {
333 hp->sampOK *= -1; /* soft failure */
334 return(hp);
335 }
336 if (hp->sampOK <= MINADIV*MINADIV)
337 return(hp); /* don't bother super-sampling */
338 n = ambssamp*wt + 0.5;
339 if (n > 8) { /* perform super-sampling? */
340 ambsupersamp(hp, n);
341 copyscolor(rcol, hp->acol);
342 }
343 return(hp); /* all is well */
344 }
345
346
347 /* Return brightness of farthest ambient sample */
348 static double
349 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
350 {
351 if (hp->sa[n1].d <= hp->sa[n2].d) {
352 if (hp->sa[n1].d <= hp->sa[n3].d)
353 return(hp->sa[n1].v[0]);
354 return(hp->sa[n3].v[0]);
355 }
356 if (hp->sa[n2].d <= hp->sa[n3].d)
357 return(hp->sa[n2].v[0]);
358 return(hp->sa[n3].v[0]);
359 }
360
361
362 /* Compute vectors and coefficients for Hessian/gradient calcs */
363 static void
364 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
365 {
366 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
367 int ii;
368
369 VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
370 VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
371 VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
372 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
373 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
374 dot_e = DOT(ftp->e_i,ftp->e_i);
375 dot_er = DOT(ftp->e_i, ftp->r_i);
376 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
377 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
378 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
379 sqrt( rdot_cp );
380 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
381 dot_e*ftp->I1 )*0.5*rdot_cp;
382 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
383 for (ii = 3; ii--; )
384 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
385 }
386
387
388 /* Compose 3x3 matrix from two vectors */
389 static void
390 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
391 {
392 mat[0][0] = 2.0*va[0]*vb[0];
393 mat[1][1] = 2.0*va[1]*vb[1];
394 mat[2][2] = 2.0*va[2]*vb[2];
395 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
396 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
397 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
398 }
399
400
401 /* Compute partial 3x3 Hessian matrix for edge */
402 static void
403 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
404 {
405 FVECT ncp;
406 FVECT m1[3], m2[3], m3[3], m4[3];
407 double d1, d2, d3, d4;
408 double I3, J3, K3;
409 int i, j;
410 /* compute intermediate coefficients */
411 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
412 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
413 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
414 d4 = DOT(ftp->e_i, ftp->r_i);
415 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
416 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
417 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
418 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
419 /* intermediate matrices */
420 VCROSS(ncp, nrm, ftp->e_i);
421 compose_matrix(m1, ncp, ftp->rI2_eJ2);
422 compose_matrix(m2, ftp->r_i, ftp->r_i);
423 compose_matrix(m3, ftp->e_i, ftp->e_i);
424 compose_matrix(m4, ftp->r_i, ftp->e_i);
425 d1 = DOT(nrm, ftp->rcp);
426 d2 = -d1*ftp->I2;
427 d1 *= 2.0;
428 for (i = 3; i--; ) /* final matrix sum */
429 for (j = 3; j--; ) {
430 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
431 2.0*J3*m4[i][j] );
432 hess[i][j] += d2*(i==j);
433 hess[i][j] *= -1.0/PI;
434 }
435 }
436
437
438 /* Reverse hessian calculation result for edge in other direction */
439 static void
440 rev_hessian(FVECT hess[3])
441 {
442 int i;
443
444 for (i = 3; i--; ) {
445 hess[i][0] = -hess[i][0];
446 hess[i][1] = -hess[i][1];
447 hess[i][2] = -hess[i][2];
448 }
449 }
450
451
452 /* Add to radiometric Hessian from the given triangle */
453 static void
454 add2hessian(FVECT hess[3], FVECT ehess1[3],
455 FVECT ehess2[3], FVECT ehess3[3], double v)
456 {
457 int i, j;
458
459 for (i = 3; i--; )
460 for (j = 3; j--; )
461 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
462 }
463
464
465 /* Compute partial displacement form factor gradient for edge */
466 static void
467 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
468 {
469 FVECT ncp;
470 double f1;
471 int i;
472
473 f1 = 2.0*DOT(nrm, ftp->rcp);
474 VCROSS(ncp, nrm, ftp->e_i);
475 for (i = 3; i--; )
476 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
477 }
478
479
480 /* Reverse gradient calculation result for edge in other direction */
481 static void
482 rev_gradient(FVECT grad)
483 {
484 grad[0] = -grad[0];
485 grad[1] = -grad[1];
486 grad[2] = -grad[2];
487 }
488
489
490 /* Add to displacement gradient from the given triangle */
491 static void
492 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
493 {
494 int i;
495
496 for (i = 3; i--; )
497 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
498 }
499
500
501 /* Compute anisotropic radii and eigenvector directions */
502 static void
503 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
504 {
505 double hess2[2][2];
506 FVECT a, b;
507 double evalue[2], slope1, xmag1;
508 int i;
509 /* project Hessian to sample plane */
510 for (i = 3; i--; ) {
511 a[i] = DOT(hessian[i], uv[0]);
512 b[i] = DOT(hessian[i], uv[1]);
513 }
514 hess2[0][0] = DOT(uv[0], a);
515 hess2[0][1] = DOT(uv[0], b);
516 hess2[1][0] = DOT(uv[1], a);
517 hess2[1][1] = DOT(uv[1], b);
518 /* compute eigenvalue(s) */
519 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
520 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
521 if (i == 1) /* double-root (circle) */
522 evalue[1] = evalue[0];
523 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
524 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
525 ra[0] = ra[1] = maxarad;
526 return;
527 }
528 if (evalue[0] > evalue[1]) {
529 ra[0] = sqrt(sqrt(4.0/evalue[0]));
530 ra[1] = sqrt(sqrt(4.0/evalue[1]));
531 slope1 = evalue[1];
532 } else {
533 ra[0] = sqrt(sqrt(4.0/evalue[1]));
534 ra[1] = sqrt(sqrt(4.0/evalue[0]));
535 slope1 = evalue[0];
536 }
537 /* compute unit eigenvectors */
538 if (fabs(hess2[0][1]) <= FTINY)
539 return; /* uv OK as is */
540 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
541 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
542 for (i = 3; i--; ) {
543 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
544 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
545 }
546 VCOPY(uv[0], a);
547 VCOPY(uv[1], b);
548 }
549
550
551 static void
552 ambHessian( /* anisotropic radii & pos. gradient */
553 AMBHEMI *hp,
554 FVECT uv[2], /* returned */
555 float ra[2], /* returned (optional) */
556 float pg[2] /* returned (optional) */
557 )
558 {
559 static char memerrmsg[] = "out of memory in ambHessian()";
560 FVECT (*hessrow)[3] = NULL;
561 FVECT *gradrow = NULL;
562 FVECT hessian[3];
563 FVECT gradient;
564 FFTRI fftr;
565 int i, j;
566 /* be sure to assign unit vectors */
567 VCOPY(uv[0], hp->ux);
568 VCOPY(uv[1], hp->uy);
569 /* clock-wise vertex traversal from sample POV */
570 if (ra != NULL) { /* initialize Hessian row buffer */
571 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
572 if (hessrow == NULL)
573 error(SYSTEM, memerrmsg);
574 memset(hessian, 0, sizeof(hessian));
575 } else if (pg == NULL) /* bogus call? */
576 return;
577 if (pg != NULL) { /* initialize form factor row buffer */
578 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
579 if (gradrow == NULL)
580 error(SYSTEM, memerrmsg);
581 memset(gradient, 0, sizeof(gradient));
582 }
583 /* compute first row of edges */
584 for (j = 0; j < hp->ns-1; j++) {
585 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
586 if (hessrow != NULL)
587 comp_hessian(hessrow[j], &fftr, hp->onrm);
588 if (gradrow != NULL)
589 comp_gradient(gradrow[j], &fftr, hp->onrm);
590 }
591 /* sum each row of triangles */
592 for (i = 0; i < hp->ns-1; i++) {
593 FVECT hesscol[3]; /* compute first vertical edge */
594 FVECT gradcol;
595 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
596 if (hessrow != NULL)
597 comp_hessian(hesscol, &fftr, hp->onrm);
598 if (gradrow != NULL)
599 comp_gradient(gradcol, &fftr, hp->onrm);
600 for (j = 0; j < hp->ns-1; j++) {
601 FVECT hessdia[3]; /* compute triangle contributions */
602 FVECT graddia;
603 double backg;
604 backg = back_ambval(hp, AI(hp,i,j),
605 AI(hp,i,j+1), AI(hp,i+1,j));
606 /* diagonal (inner) edge */
607 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
608 if (hessrow != NULL) {
609 comp_hessian(hessdia, &fftr, hp->onrm);
610 rev_hessian(hesscol);
611 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
612 }
613 if (gradrow != NULL) {
614 comp_gradient(graddia, &fftr, hp->onrm);
615 rev_gradient(gradcol);
616 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
617 }
618 /* initialize edge in next row */
619 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
620 if (hessrow != NULL)
621 comp_hessian(hessrow[j], &fftr, hp->onrm);
622 if (gradrow != NULL)
623 comp_gradient(gradrow[j], &fftr, hp->onrm);
624 /* new column edge & paired triangle */
625 backg = back_ambval(hp, AI(hp,i+1,j+1),
626 AI(hp,i+1,j), AI(hp,i,j+1));
627 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
628 if (hessrow != NULL) {
629 comp_hessian(hesscol, &fftr, hp->onrm);
630 rev_hessian(hessdia);
631 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
632 if (i < hp->ns-2)
633 rev_hessian(hessrow[j]);
634 }
635 if (gradrow != NULL) {
636 comp_gradient(gradcol, &fftr, hp->onrm);
637 rev_gradient(graddia);
638 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
639 if (i < hp->ns-2)
640 rev_gradient(gradrow[j]);
641 }
642 }
643 }
644 /* release row buffers */
645 if (hessrow != NULL) free(hessrow);
646 if (gradrow != NULL) free(gradrow);
647
648 if (ra != NULL) /* extract eigenvectors & radii */
649 eigenvectors(uv, ra, hessian);
650 if (pg != NULL) { /* tangential position gradient */
651 pg[0] = DOT(gradient, uv[0]);
652 pg[1] = DOT(gradient, uv[1]);
653 }
654 }
655
656
657 /* Compute direction gradient from a hemispherical sampling */
658 static void
659 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
660 {
661 AMBSAMP *ap;
662 double dgsum[2];
663 int n;
664 FVECT vd;
665 double gfact;
666
667 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
668 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
669 /* use vector for azimuth + 90deg */
670 VSUB(vd, ap->p, hp->rp->rop);
671 /* brightness over cosine factor */
672 gfact = ap->v[0] / DOT(hp->onrm, vd);
673 /* sine = proj_radius/vd_length */
674 dgsum[0] -= DOT(uv[1], vd) * gfact;
675 dgsum[1] += DOT(uv[0], vd) * gfact;
676 }
677 dg[0] = dgsum[0] / (hp->ns*hp->ns);
678 dg[1] = dgsum[1] / (hp->ns*hp->ns);
679 }
680
681
682 /* Compute potential light leak direction flags for cache value */
683 static uint32
684 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
685 {
686 const double max_d = 1.0/(minarad*ambacc + 0.001);
687 const double ang_res = 0.5*PI/hp->ns;
688 const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
689 double avg_d = 0;
690 uint32 flgs = 0;
691 FVECT vec;
692 double u, v;
693 double ang, a1;
694 int i, j;
695 /* don't bother for a few samples */
696 if (hp->ns < 8)
697 return(0);
698 /* check distances overhead */
699 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
700 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
701 avg_d += ambsam(hp,i,j).d;
702 avg_d *= 4.0/(hp->ns*hp->ns);
703 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
704 return(0);
705 if (avg_d >= max_d) /* insurance */
706 return(0);
707 /* else circle around perimeter */
708 for (i = 0; i < hp->ns; i++)
709 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
710 AMBSAMP *ap = &ambsam(hp,i,j);
711 if ((ap->d <= FTINY) | (ap->d >= max_d))
712 continue; /* too far or too near */
713 VSUB(vec, ap->p, hp->rp->rop);
714 u = DOT(vec, uv[0]);
715 v = DOT(vec, uv[1]);
716 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
717 continue; /* occluder outside ellipse */
718 ang = atan2a(v, u); /* else set direction flags */
719 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
720 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
721 }
722 return(flgs);
723 }
724
725
726 int
727 doambient( /* compute ambient component */
728 SCOLOR rcol, /* input/output color */
729 RAY *r,
730 double wt, /* negative for back side */
731 FVECT uv[2], /* returned (optional) */
732 float ra[2], /* returned (optional) */
733 float pg[2], /* returned (optional) */
734 float dg[2], /* returned (optional) */
735 uint32 *crlp /* returned (optional) */
736 )
737 {
738 AMBHEMI *hp = samp_hemi(rcol, r, wt);
739 FVECT my_uv[2];
740 double d, K;
741 AMBSAMP *ap;
742 int i;
743 /* clear return values */
744 if (uv != NULL)
745 memset(uv, 0, sizeof(FVECT)*2);
746 if (ra != NULL)
747 ra[0] = ra[1] = 0.0;
748 if (pg != NULL)
749 pg[0] = pg[1] = 0.0;
750 if (dg != NULL)
751 dg[0] = dg[1] = 0.0;
752 if (crlp != NULL)
753 *crlp = 0;
754 if (hp == NULL) /* sampling falure? */
755 return(0);
756
757 if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
758 (hp->sampOK < 0) | (hp->ns < MINADIV)) {
759 free(hp); /* Hessian not requested/possible */
760 return(-1); /* value-only return value */
761 }
762 if ((d = scolor_mean(rcol)) > FTINY) {
763 d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */
764 K = 0.01;
765 } else { /* or fall back on geometric Hessian */
766 K = 1.0;
767 pg = NULL;
768 dg = NULL;
769 crlp = NULL;
770 }
771 ap = hp->sa; /* single channel from here on... */
772 for (i = hp->ns*hp->ns; i--; ap++)
773 ap->v[0] = scolor_mean(ap->v)*d + K;
774
775 if (uv == NULL) /* make sure we have axis pointers */
776 uv = my_uv;
777 /* compute radii & pos. gradient */
778 ambHessian(hp, uv, ra, pg);
779
780 if (dg != NULL) /* compute direction gradient */
781 ambdirgrad(hp, uv, dg);
782
783 if (ra != NULL) { /* scale/clamp radii */
784 if (pg != NULL) {
785 if (ra[0]*(d = fabs(pg[0])) > 1.0)
786 ra[0] = 1.0/d;
787 if (ra[1]*(d = fabs(pg[1])) > 1.0)
788 ra[1] = 1.0/d;
789 if (ra[0] > ra[1])
790 ra[0] = ra[1];
791 }
792 if (ra[0] < minarad) {
793 ra[0] = minarad;
794 if (ra[1] < minarad)
795 ra[1] = minarad;
796 }
797 ra[0] *= d = 1.0/sqrt(fabs(wt));
798 if ((ra[1] *= d) > 2.0*ra[0])
799 ra[1] = 2.0*ra[0];
800 if (ra[1] > maxarad) {
801 ra[1] = maxarad;
802 if (ra[0] > maxarad)
803 ra[0] = maxarad;
804 }
805 /* flag encroached directions */
806 if (crlp != NULL) /* XXX doesn't update with changes to ambacc */
807 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
808 if (pg != NULL) { /* cap gradient if necessary */
809 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
810 if (d > 1.0) {
811 d = 1.0/sqrt(d);
812 pg[0] *= d;
813 pg[1] *= d;
814 }
815 }
816 }
817 free(hp); /* clean up and return */
818 return(1);
819 }