ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.88
Committed: Wed Dec 15 01:38:50 2021 UTC (2 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.87: +4 -5 lines
Log Message:
refactor: removed prefix from SDdisk2square() and SDsquare2disk() & made consistent

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.87 2021/12/12 19:55:43 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifndef MINADIV
25 #define MINADIV 7 /* minimum # divisions in each dimension */
26 #endif
27
28 typedef struct {
29 COLOR v; /* hemisphere sample value */
30 float d; /* reciprocal distance */
31 FVECT p; /* intersection point */
32 } AMBSAMP; /* sample value */
33
34 typedef struct {
35 RAY *rp; /* originating ray sample */
36 int ns; /* number of samples per axis */
37 int sampOK; /* acquired full sample set? */
38 COLOR acoef; /* division contribution coefficient */
39 double acol[3]; /* accumulated color */
40 FVECT ux, uy; /* tangent axis unit vectors */
41 AMBSAMP sa[1]; /* sample array (extends struct) */
42 } AMBHEMI; /* ambient sample hemisphere */
43
44 #define AI(h,i,j) ((i)*(h)->ns + (j))
45 #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
46
47 typedef struct {
48 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
49 double I1, I2;
50 } FFTRI; /* vectors and coefficients for Hessian calculation */
51
52
53 static int
54 ambcollision( /* proposed direciton collides? */
55 AMBHEMI *hp,
56 int i,
57 int j,
58 FVECT dv
59 )
60 {
61 double cos_thresh;
62 int ii, jj;
63 /* min. spacing = 1/4th division */
64 cos_thresh = (PI/4.)/(double)hp->ns;
65 cos_thresh = 1. - .5*cos_thresh*cos_thresh;
66 /* check existing neighbors */
67 for (ii = i-1; ii <= i+1; ii++) {
68 if (ii < 0) continue;
69 if (ii >= hp->ns) break;
70 for (jj = j-1; jj <= j+1; jj++) {
71 AMBSAMP *ap;
72 FVECT avec;
73 double dprod;
74 if (jj < 0) continue;
75 if (jj >= hp->ns) break;
76 if ((ii==i) & (jj==j)) continue;
77 ap = &ambsam(hp,ii,jj);
78 if (ap->d <= .5/FHUGE)
79 continue; /* no one home */
80 VSUB(avec, ap->p, hp->rp->rop);
81 dprod = DOT(avec, dv);
82 if (dprod >= cos_thresh*VLEN(avec))
83 return(1); /* collision */
84 }
85 }
86 return(0); /* nothing to worry about */
87 }
88
89
90 static int
91 ambsample( /* initial ambient division sample */
92 AMBHEMI *hp,
93 int i,
94 int j,
95 int n
96 )
97 {
98 AMBSAMP *ap = &ambsam(hp,i,j);
99 RAY ar;
100 int hlist[3], ii;
101 RREAL spt[2];
102 double zd;
103 /* generate hemispherical sample */
104 /* ambient coefficient for weight */
105 if (ambacc > FTINY)
106 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
107 else
108 copycolor(ar.rcoef, hp->acoef);
109 if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
110 return(0);
111 if (ambacc > FTINY) {
112 multcolor(ar.rcoef, hp->acoef);
113 scalecolor(ar.rcoef, 1./AVGREFL);
114 }
115 hlist[0] = hp->rp->rno;
116 hlist[1] = j;
117 hlist[2] = i;
118 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
119 resample:
120 square2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
121 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
122 for (ii = 3; ii--; )
123 ar.rdir[ii] = spt[0]*hp->ux[ii] +
124 spt[1]*hp->uy[ii] +
125 zd*hp->rp->ron[ii];
126 checknorm(ar.rdir);
127 /* avoid coincident samples */
128 if (!n && ambcollision(hp, i, j, ar.rdir)) {
129 spt[0] = frandom(); spt[1] = frandom();
130 goto resample; /* reject this sample */
131 }
132 dimlist[ndims++] = AI(hp,i,j) + 90171;
133 rayvalue(&ar); /* evaluate ray */
134 ndims--;
135 zd = raydistance(&ar);
136 if (zd <= FTINY)
137 return(0); /* should never happen */
138 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
139 if (zd*ap->d < 1.0) /* new/closer distance? */
140 ap->d = 1.0/zd;
141 if (!n) { /* record first vertex & value */
142 if (zd > 10.0*thescene.cusize + 1000.)
143 zd = 10.0*thescene.cusize + 1000.;
144 VSUM(ap->p, ar.rorg, ar.rdir, zd);
145 copycolor(ap->v, ar.rcol);
146 } else { /* else update recorded value */
147 hp->acol[RED] -= colval(ap->v,RED);
148 hp->acol[GRN] -= colval(ap->v,GRN);
149 hp->acol[BLU] -= colval(ap->v,BLU);
150 zd = 1.0/(double)(n+1);
151 scalecolor(ar.rcol, zd);
152 zd *= (double)n;
153 scalecolor(ap->v, zd);
154 addcolor(ap->v, ar.rcol);
155 }
156 addcolor(hp->acol, ap->v); /* add to our sum */
157 return(1);
158 }
159
160
161 /* Estimate variance based on ambient division differences */
162 static float *
163 getambdiffs(AMBHEMI *hp)
164 {
165 const double normf = 1./bright(hp->acoef);
166 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
167 float *ep;
168 AMBSAMP *ap;
169 double b, b1, d2;
170 int i, j;
171
172 if (earr == NULL) /* out of memory? */
173 return(NULL);
174 /* sum squared neighbor diffs */
175 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
176 for (j = 0; j < hp->ns; j++, ap++, ep++) {
177 b = bright(ap[0].v);
178 if (i) { /* from above */
179 b1 = bright(ap[-hp->ns].v);
180 d2 = b - b1;
181 d2 *= d2*normf/(b + b1);
182 ep[0] += d2;
183 ep[-hp->ns] += d2;
184 }
185 if (!j) continue;
186 /* from behind */
187 b1 = bright(ap[-1].v);
188 d2 = b - b1;
189 d2 *= d2*normf/(b + b1);
190 ep[0] += d2;
191 ep[-1] += d2;
192 if (!i) continue;
193 /* diagonal */
194 b1 = bright(ap[-hp->ns-1].v);
195 d2 = b - b1;
196 d2 *= d2*normf/(b + b1);
197 ep[0] += d2;
198 ep[-hp->ns-1] += d2;
199 }
200 /* correct for number of neighbors */
201 earr[0] *= 8./3.;
202 earr[hp->ns-1] *= 8./3.;
203 earr[(hp->ns-1)*hp->ns] *= 8./3.;
204 earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.;
205 for (i = 1; i < hp->ns-1; i++) {
206 earr[i*hp->ns] *= 8./5.;
207 earr[i*hp->ns + hp->ns-1] *= 8./5.;
208 }
209 for (j = 1; j < hp->ns-1; j++) {
210 earr[j] *= 8./5.;
211 earr[(hp->ns-1)*hp->ns + j] *= 8./5.;
212 }
213 return(earr);
214 }
215
216
217 /* Perform super-sampling on hemisphere (introduces bias) */
218 static void
219 ambsupersamp(AMBHEMI *hp, int cnt)
220 {
221 float *earr = getambdiffs(hp);
222 double e2rem = 0;
223 float *ep;
224 int i, j, n, nss;
225
226 if (earr == NULL) /* just skip calc. if no memory */
227 return;
228 /* accumulate estimated variances */
229 for (ep = earr + hp->ns*hp->ns; ep > earr; )
230 e2rem += *--ep;
231 ep = earr; /* perform super-sampling */
232 for (i = 0; i < hp->ns; i++)
233 for (j = 0; j < hp->ns; j++) {
234 if (e2rem <= FTINY)
235 goto done; /* nothing left to do */
236 nss = *ep/e2rem*cnt + frandom();
237 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
238 if (!--cnt) goto done;
239 e2rem -= *ep++; /* update remainder */
240 }
241 done:
242 free(earr);
243 }
244
245
246 static AMBHEMI *
247 samp_hemi( /* sample indirect hemisphere */
248 COLOR rcol,
249 RAY *r,
250 double wt
251 )
252 {
253 AMBHEMI *hp;
254 double d;
255 int n, i, j;
256 /* insignificance check */
257 if (bright(rcol) <= FTINY)
258 return(NULL);
259 /* set number of divisions */
260 if (ambacc <= FTINY &&
261 wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight)))
262 wt = d; /* avoid ray termination */
263 n = sqrt(ambdiv * wt) + 0.5;
264 i = 1 + (MINADIV-1)*(ambacc > FTINY);
265 if (n < i) /* use minimum number of samples? */
266 n = i;
267 /* allocate sampling array */
268 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
269 if (hp == NULL)
270 error(SYSTEM, "out of memory in samp_hemi");
271 hp->rp = r;
272 hp->ns = n;
273 hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0;
274 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
275 hp->sampOK = 0;
276 /* assign coefficient */
277 copycolor(hp->acoef, rcol);
278 d = 1.0/(n*n);
279 scalecolor(hp->acoef, d);
280 /* make tangent plane axes */
281 if (!getperpendicular(hp->ux, r->ron, 1))
282 error(CONSISTENCY, "bad ray direction in samp_hemi");
283 VCROSS(hp->uy, r->ron, hp->ux);
284 /* sample divisions */
285 for (i = hp->ns; i--; )
286 for (j = hp->ns; j--; )
287 hp->sampOK += ambsample(hp, i, j, 0);
288 copycolor(rcol, hp->acol);
289 if (!hp->sampOK) { /* utter failure? */
290 free(hp);
291 return(NULL);
292 }
293 if (hp->sampOK < hp->ns*hp->ns) {
294 hp->sampOK *= -1; /* soft failure */
295 return(hp);
296 }
297 if (hp->sampOK <= MINADIV*MINADIV)
298 return(hp); /* don't bother super-sampling */
299 n = ambssamp*wt + 0.5;
300 if (n > 8) { /* perform super-sampling? */
301 ambsupersamp(hp, n);
302 copycolor(rcol, hp->acol);
303 }
304 return(hp); /* all is well */
305 }
306
307
308 /* Return brightness of farthest ambient sample */
309 static double
310 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
311 {
312 if (hp->sa[n1].d <= hp->sa[n2].d) {
313 if (hp->sa[n1].d <= hp->sa[n3].d)
314 return(colval(hp->sa[n1].v,CIEY));
315 return(colval(hp->sa[n3].v,CIEY));
316 }
317 if (hp->sa[n2].d <= hp->sa[n3].d)
318 return(colval(hp->sa[n2].v,CIEY));
319 return(colval(hp->sa[n3].v,CIEY));
320 }
321
322
323 /* Compute vectors and coefficients for Hessian/gradient calcs */
324 static void
325 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
326 {
327 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
328 int ii;
329
330 VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
331 VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
332 VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
333 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
334 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
335 dot_e = DOT(ftp->e_i,ftp->e_i);
336 dot_er = DOT(ftp->e_i, ftp->r_i);
337 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
338 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
339 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
340 sqrt( rdot_cp );
341 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
342 dot_e*ftp->I1 )*0.5*rdot_cp;
343 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
344 for (ii = 3; ii--; )
345 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
346 }
347
348
349 /* Compose 3x3 matrix from two vectors */
350 static void
351 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
352 {
353 mat[0][0] = 2.0*va[0]*vb[0];
354 mat[1][1] = 2.0*va[1]*vb[1];
355 mat[2][2] = 2.0*va[2]*vb[2];
356 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
357 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
358 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
359 }
360
361
362 /* Compute partial 3x3 Hessian matrix for edge */
363 static void
364 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
365 {
366 FVECT ncp;
367 FVECT m1[3], m2[3], m3[3], m4[3];
368 double d1, d2, d3, d4;
369 double I3, J3, K3;
370 int i, j;
371 /* compute intermediate coefficients */
372 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
373 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
374 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
375 d4 = DOT(ftp->e_i, ftp->r_i);
376 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
377 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
378 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
379 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
380 /* intermediate matrices */
381 VCROSS(ncp, nrm, ftp->e_i);
382 compose_matrix(m1, ncp, ftp->rI2_eJ2);
383 compose_matrix(m2, ftp->r_i, ftp->r_i);
384 compose_matrix(m3, ftp->e_i, ftp->e_i);
385 compose_matrix(m4, ftp->r_i, ftp->e_i);
386 d1 = DOT(nrm, ftp->rcp);
387 d2 = -d1*ftp->I2;
388 d1 *= 2.0;
389 for (i = 3; i--; ) /* final matrix sum */
390 for (j = 3; j--; ) {
391 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
392 2.0*J3*m4[i][j] );
393 hess[i][j] += d2*(i==j);
394 hess[i][j] *= -1.0/PI;
395 }
396 }
397
398
399 /* Reverse hessian calculation result for edge in other direction */
400 static void
401 rev_hessian(FVECT hess[3])
402 {
403 int i;
404
405 for (i = 3; i--; ) {
406 hess[i][0] = -hess[i][0];
407 hess[i][1] = -hess[i][1];
408 hess[i][2] = -hess[i][2];
409 }
410 }
411
412
413 /* Add to radiometric Hessian from the given triangle */
414 static void
415 add2hessian(FVECT hess[3], FVECT ehess1[3],
416 FVECT ehess2[3], FVECT ehess3[3], double v)
417 {
418 int i, j;
419
420 for (i = 3; i--; )
421 for (j = 3; j--; )
422 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
423 }
424
425
426 /* Compute partial displacement form factor gradient for edge */
427 static void
428 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
429 {
430 FVECT ncp;
431 double f1;
432 int i;
433
434 f1 = 2.0*DOT(nrm, ftp->rcp);
435 VCROSS(ncp, nrm, ftp->e_i);
436 for (i = 3; i--; )
437 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
438 }
439
440
441 /* Reverse gradient calculation result for edge in other direction */
442 static void
443 rev_gradient(FVECT grad)
444 {
445 grad[0] = -grad[0];
446 grad[1] = -grad[1];
447 grad[2] = -grad[2];
448 }
449
450
451 /* Add to displacement gradient from the given triangle */
452 static void
453 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
454 {
455 int i;
456
457 for (i = 3; i--; )
458 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
459 }
460
461
462 /* Compute anisotropic radii and eigenvector directions */
463 static void
464 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
465 {
466 double hess2[2][2];
467 FVECT a, b;
468 double evalue[2], slope1, xmag1;
469 int i;
470 /* project Hessian to sample plane */
471 for (i = 3; i--; ) {
472 a[i] = DOT(hessian[i], uv[0]);
473 b[i] = DOT(hessian[i], uv[1]);
474 }
475 hess2[0][0] = DOT(uv[0], a);
476 hess2[0][1] = DOT(uv[0], b);
477 hess2[1][0] = DOT(uv[1], a);
478 hess2[1][1] = DOT(uv[1], b);
479 /* compute eigenvalue(s) */
480 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
481 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
482 if (i == 1) /* double-root (circle) */
483 evalue[1] = evalue[0];
484 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
485 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
486 ra[0] = ra[1] = maxarad;
487 return;
488 }
489 if (evalue[0] > evalue[1]) {
490 ra[0] = sqrt(sqrt(4.0/evalue[0]));
491 ra[1] = sqrt(sqrt(4.0/evalue[1]));
492 slope1 = evalue[1];
493 } else {
494 ra[0] = sqrt(sqrt(4.0/evalue[1]));
495 ra[1] = sqrt(sqrt(4.0/evalue[0]));
496 slope1 = evalue[0];
497 }
498 /* compute unit eigenvectors */
499 if (fabs(hess2[0][1]) <= FTINY)
500 return; /* uv OK as is */
501 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
502 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
503 for (i = 3; i--; ) {
504 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
505 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
506 }
507 VCOPY(uv[0], a);
508 VCOPY(uv[1], b);
509 }
510
511
512 static void
513 ambHessian( /* anisotropic radii & pos. gradient */
514 AMBHEMI *hp,
515 FVECT uv[2], /* returned */
516 float ra[2], /* returned (optional) */
517 float pg[2] /* returned (optional) */
518 )
519 {
520 static char memerrmsg[] = "out of memory in ambHessian()";
521 FVECT (*hessrow)[3] = NULL;
522 FVECT *gradrow = NULL;
523 FVECT hessian[3];
524 FVECT gradient;
525 FFTRI fftr;
526 int i, j;
527 /* be sure to assign unit vectors */
528 VCOPY(uv[0], hp->ux);
529 VCOPY(uv[1], hp->uy);
530 /* clock-wise vertex traversal from sample POV */
531 if (ra != NULL) { /* initialize Hessian row buffer */
532 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
533 if (hessrow == NULL)
534 error(SYSTEM, memerrmsg);
535 memset(hessian, 0, sizeof(hessian));
536 } else if (pg == NULL) /* bogus call? */
537 return;
538 if (pg != NULL) { /* initialize form factor row buffer */
539 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
540 if (gradrow == NULL)
541 error(SYSTEM, memerrmsg);
542 memset(gradient, 0, sizeof(gradient));
543 }
544 /* compute first row of edges */
545 for (j = 0; j < hp->ns-1; j++) {
546 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
547 if (hessrow != NULL)
548 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
549 if (gradrow != NULL)
550 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
551 }
552 /* sum each row of triangles */
553 for (i = 0; i < hp->ns-1; i++) {
554 FVECT hesscol[3]; /* compute first vertical edge */
555 FVECT gradcol;
556 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
557 if (hessrow != NULL)
558 comp_hessian(hesscol, &fftr, hp->rp->ron);
559 if (gradrow != NULL)
560 comp_gradient(gradcol, &fftr, hp->rp->ron);
561 for (j = 0; j < hp->ns-1; j++) {
562 FVECT hessdia[3]; /* compute triangle contributions */
563 FVECT graddia;
564 double backg;
565 backg = back_ambval(hp, AI(hp,i,j),
566 AI(hp,i,j+1), AI(hp,i+1,j));
567 /* diagonal (inner) edge */
568 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
569 if (hessrow != NULL) {
570 comp_hessian(hessdia, &fftr, hp->rp->ron);
571 rev_hessian(hesscol);
572 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
573 }
574 if (gradrow != NULL) {
575 comp_gradient(graddia, &fftr, hp->rp->ron);
576 rev_gradient(gradcol);
577 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
578 }
579 /* initialize edge in next row */
580 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
581 if (hessrow != NULL)
582 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
583 if (gradrow != NULL)
584 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
585 /* new column edge & paired triangle */
586 backg = back_ambval(hp, AI(hp,i+1,j+1),
587 AI(hp,i+1,j), AI(hp,i,j+1));
588 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
589 if (hessrow != NULL) {
590 comp_hessian(hesscol, &fftr, hp->rp->ron);
591 rev_hessian(hessdia);
592 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
593 if (i < hp->ns-2)
594 rev_hessian(hessrow[j]);
595 }
596 if (gradrow != NULL) {
597 comp_gradient(gradcol, &fftr, hp->rp->ron);
598 rev_gradient(graddia);
599 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
600 if (i < hp->ns-2)
601 rev_gradient(gradrow[j]);
602 }
603 }
604 }
605 /* release row buffers */
606 if (hessrow != NULL) free(hessrow);
607 if (gradrow != NULL) free(gradrow);
608
609 if (ra != NULL) /* extract eigenvectors & radii */
610 eigenvectors(uv, ra, hessian);
611 if (pg != NULL) { /* tangential position gradient */
612 pg[0] = DOT(gradient, uv[0]);
613 pg[1] = DOT(gradient, uv[1]);
614 }
615 }
616
617
618 /* Compute direction gradient from a hemispherical sampling */
619 static void
620 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
621 {
622 AMBSAMP *ap;
623 double dgsum[2];
624 int n;
625 FVECT vd;
626 double gfact;
627
628 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
629 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
630 /* use vector for azimuth + 90deg */
631 VSUB(vd, ap->p, hp->rp->rop);
632 /* brightness over cosine factor */
633 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
634 /* sine = proj_radius/vd_length */
635 dgsum[0] -= DOT(uv[1], vd) * gfact;
636 dgsum[1] += DOT(uv[0], vd) * gfact;
637 }
638 dg[0] = dgsum[0] / (hp->ns*hp->ns);
639 dg[1] = dgsum[1] / (hp->ns*hp->ns);
640 }
641
642
643 /* Compute potential light leak direction flags for cache value */
644 static uint32
645 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
646 {
647 const double max_d = 1.0/(minarad*ambacc + 0.001);
648 const double ang_res = 0.5*PI/hp->ns;
649 const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
650 double avg_d = 0;
651 uint32 flgs = 0;
652 FVECT vec;
653 double u, v;
654 double ang, a1;
655 int i, j;
656 /* don't bother for a few samples */
657 if (hp->ns < 8)
658 return(0);
659 /* check distances overhead */
660 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
661 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
662 avg_d += ambsam(hp,i,j).d;
663 avg_d *= 4.0/(hp->ns*hp->ns);
664 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
665 return(0);
666 if (avg_d >= max_d) /* insurance */
667 return(0);
668 /* else circle around perimeter */
669 for (i = 0; i < hp->ns; i++)
670 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
671 AMBSAMP *ap = &ambsam(hp,i,j);
672 if ((ap->d <= FTINY) | (ap->d >= max_d))
673 continue; /* too far or too near */
674 VSUB(vec, ap->p, hp->rp->rop);
675 u = DOT(vec, uv[0]);
676 v = DOT(vec, uv[1]);
677 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
678 continue; /* occluder outside ellipse */
679 ang = atan2a(v, u); /* else set direction flags */
680 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
681 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
682 }
683 return(flgs);
684 }
685
686
687 int
688 doambient( /* compute ambient component */
689 COLOR rcol, /* input/output color */
690 RAY *r,
691 double wt,
692 FVECT uv[2], /* returned (optional) */
693 float ra[2], /* returned (optional) */
694 float pg[2], /* returned (optional) */
695 float dg[2], /* returned (optional) */
696 uint32 *crlp /* returned (optional) */
697 )
698 {
699 AMBHEMI *hp = samp_hemi(rcol, r, wt);
700 FVECT my_uv[2];
701 double d, K;
702 AMBSAMP *ap;
703 int i;
704 /* clear return values */
705 if (uv != NULL)
706 memset(uv, 0, sizeof(FVECT)*2);
707 if (ra != NULL)
708 ra[0] = ra[1] = 0.0;
709 if (pg != NULL)
710 pg[0] = pg[1] = 0.0;
711 if (dg != NULL)
712 dg[0] = dg[1] = 0.0;
713 if (crlp != NULL)
714 *crlp = 0;
715 if (hp == NULL) /* sampling falure? */
716 return(0);
717
718 if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
719 (hp->sampOK < 0) | (hp->ns < MINADIV)) {
720 free(hp); /* Hessian not requested/possible */
721 return(-1); /* value-only return value */
722 }
723 if ((d = bright(rcol)) > FTINY) { /* normalize Y values */
724 d = 0.99*(hp->ns*hp->ns)/d;
725 K = 0.01;
726 } else { /* or fall back on geometric Hessian */
727 K = 1.0;
728 pg = NULL;
729 dg = NULL;
730 crlp = NULL;
731 }
732 ap = hp->sa; /* relative Y channel from here on... */
733 for (i = hp->ns*hp->ns; i--; ap++)
734 colval(ap->v,CIEY) = bright(ap->v)*d + K;
735
736 if (uv == NULL) /* make sure we have axis pointers */
737 uv = my_uv;
738 /* compute radii & pos. gradient */
739 ambHessian(hp, uv, ra, pg);
740
741 if (dg != NULL) /* compute direction gradient */
742 ambdirgrad(hp, uv, dg);
743
744 if (ra != NULL) { /* scale/clamp radii */
745 if (pg != NULL) {
746 if (ra[0]*(d = fabs(pg[0])) > 1.0)
747 ra[0] = 1.0/d;
748 if (ra[1]*(d = fabs(pg[1])) > 1.0)
749 ra[1] = 1.0/d;
750 if (ra[0] > ra[1])
751 ra[0] = ra[1];
752 }
753 if (ra[0] < minarad) {
754 ra[0] = minarad;
755 if (ra[1] < minarad)
756 ra[1] = minarad;
757 }
758 ra[0] *= d = 1.0/sqrt(wt);
759 if ((ra[1] *= d) > 2.0*ra[0])
760 ra[1] = 2.0*ra[0];
761 if (ra[1] > maxarad) {
762 ra[1] = maxarad;
763 if (ra[0] > maxarad)
764 ra[0] = maxarad;
765 }
766 /* flag encroached directions */
767 if (crlp != NULL) /* XXX doesn't update with changes to ambacc */
768 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
769 if (pg != NULL) { /* cap gradient if necessary */
770 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
771 if (d > 1.0) {
772 d = 1.0/sqrt(d);
773 pg[0] *= d;
774 pg[1] *= d;
775 }
776 }
777 }
778 free(hp); /* clean up and return */
779 return(1);
780 }