ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.87
Committed: Sun Dec 12 19:55:43 2021 UTC (2 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.86: +2 -3 lines
Log Message:
docs: Added comment pointing out issue with ambient corral after changes to -aa

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.86 2021/02/17 01:29:22 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifndef MINADIV
25 #define MINADIV 7 /* minimum # divisions in each dimension */
26 #endif
27
28 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
29
30 typedef struct {
31 COLOR v; /* hemisphere sample value */
32 float d; /* reciprocal distance */
33 FVECT p; /* intersection point */
34 } AMBSAMP; /* sample value */
35
36 typedef struct {
37 RAY *rp; /* originating ray sample */
38 int ns; /* number of samples per axis */
39 int sampOK; /* acquired full sample set? */
40 COLOR acoef; /* division contribution coefficient */
41 double acol[3]; /* accumulated color */
42 FVECT ux, uy; /* tangent axis unit vectors */
43 AMBSAMP sa[1]; /* sample array (extends struct) */
44 } AMBHEMI; /* ambient sample hemisphere */
45
46 #define AI(h,i,j) ((i)*(h)->ns + (j))
47 #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
48
49 typedef struct {
50 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
51 double I1, I2;
52 } FFTRI; /* vectors and coefficients for Hessian calculation */
53
54
55 static int
56 ambcollision( /* proposed direciton collides? */
57 AMBHEMI *hp,
58 int i,
59 int j,
60 FVECT dv
61 )
62 {
63 double cos_thresh;
64 int ii, jj;
65 /* min. spacing = 1/4th division */
66 cos_thresh = (PI/4.)/(double)hp->ns;
67 cos_thresh = 1. - .5*cos_thresh*cos_thresh;
68 /* check existing neighbors */
69 for (ii = i-1; ii <= i+1; ii++) {
70 if (ii < 0) continue;
71 if (ii >= hp->ns) break;
72 for (jj = j-1; jj <= j+1; jj++) {
73 AMBSAMP *ap;
74 FVECT avec;
75 double dprod;
76 if (jj < 0) continue;
77 if (jj >= hp->ns) break;
78 if ((ii==i) & (jj==j)) continue;
79 ap = &ambsam(hp,ii,jj);
80 if (ap->d <= .5/FHUGE)
81 continue; /* no one home */
82 VSUB(avec, ap->p, hp->rp->rop);
83 dprod = DOT(avec, dv);
84 if (dprod >= cos_thresh*VLEN(avec))
85 return(1); /* collision */
86 }
87 }
88 return(0); /* nothing to worry about */
89 }
90
91
92 static int
93 ambsample( /* initial ambient division sample */
94 AMBHEMI *hp,
95 int i,
96 int j,
97 int n
98 )
99 {
100 AMBSAMP *ap = &ambsam(hp,i,j);
101 RAY ar;
102 int hlist[3], ii;
103 double spt[2], zd;
104 /* generate hemispherical sample */
105 /* ambient coefficient for weight */
106 if (ambacc > FTINY)
107 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
108 else
109 copycolor(ar.rcoef, hp->acoef);
110 if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
111 return(0);
112 if (ambacc > FTINY) {
113 multcolor(ar.rcoef, hp->acoef);
114 scalecolor(ar.rcoef, 1./AVGREFL);
115 }
116 hlist[0] = hp->rp->rno;
117 hlist[1] = j;
118 hlist[2] = i;
119 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
120 resample:
121 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
122 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
123 for (ii = 3; ii--; )
124 ar.rdir[ii] = spt[0]*hp->ux[ii] +
125 spt[1]*hp->uy[ii] +
126 zd*hp->rp->ron[ii];
127 checknorm(ar.rdir);
128 /* avoid coincident samples */
129 if (!n && ambcollision(hp, i, j, ar.rdir)) {
130 spt[0] = frandom(); spt[1] = frandom();
131 goto resample; /* reject this sample */
132 }
133 dimlist[ndims++] = AI(hp,i,j) + 90171;
134 rayvalue(&ar); /* evaluate ray */
135 ndims--;
136 zd = raydistance(&ar);
137 if (zd <= FTINY)
138 return(0); /* should never happen */
139 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
140 if (zd*ap->d < 1.0) /* new/closer distance? */
141 ap->d = 1.0/zd;
142 if (!n) { /* record first vertex & value */
143 if (zd > 10.0*thescene.cusize + 1000.)
144 zd = 10.0*thescene.cusize + 1000.;
145 VSUM(ap->p, ar.rorg, ar.rdir, zd);
146 copycolor(ap->v, ar.rcol);
147 } else { /* else update recorded value */
148 hp->acol[RED] -= colval(ap->v,RED);
149 hp->acol[GRN] -= colval(ap->v,GRN);
150 hp->acol[BLU] -= colval(ap->v,BLU);
151 zd = 1.0/(double)(n+1);
152 scalecolor(ar.rcol, zd);
153 zd *= (double)n;
154 scalecolor(ap->v, zd);
155 addcolor(ap->v, ar.rcol);
156 }
157 addcolor(hp->acol, ap->v); /* add to our sum */
158 return(1);
159 }
160
161
162 /* Estimate variance based on ambient division differences */
163 static float *
164 getambdiffs(AMBHEMI *hp)
165 {
166 const double normf = 1./bright(hp->acoef);
167 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
168 float *ep;
169 AMBSAMP *ap;
170 double b, b1, d2;
171 int i, j;
172
173 if (earr == NULL) /* out of memory? */
174 return(NULL);
175 /* sum squared neighbor diffs */
176 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
177 for (j = 0; j < hp->ns; j++, ap++, ep++) {
178 b = bright(ap[0].v);
179 if (i) { /* from above */
180 b1 = bright(ap[-hp->ns].v);
181 d2 = b - b1;
182 d2 *= d2*normf/(b + b1);
183 ep[0] += d2;
184 ep[-hp->ns] += d2;
185 }
186 if (!j) continue;
187 /* from behind */
188 b1 = bright(ap[-1].v);
189 d2 = b - b1;
190 d2 *= d2*normf/(b + b1);
191 ep[0] += d2;
192 ep[-1] += d2;
193 if (!i) continue;
194 /* diagonal */
195 b1 = bright(ap[-hp->ns-1].v);
196 d2 = b - b1;
197 d2 *= d2*normf/(b + b1);
198 ep[0] += d2;
199 ep[-hp->ns-1] += d2;
200 }
201 /* correct for number of neighbors */
202 earr[0] *= 8./3.;
203 earr[hp->ns-1] *= 8./3.;
204 earr[(hp->ns-1)*hp->ns] *= 8./3.;
205 earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.;
206 for (i = 1; i < hp->ns-1; i++) {
207 earr[i*hp->ns] *= 8./5.;
208 earr[i*hp->ns + hp->ns-1] *= 8./5.;
209 }
210 for (j = 1; j < hp->ns-1; j++) {
211 earr[j] *= 8./5.;
212 earr[(hp->ns-1)*hp->ns + j] *= 8./5.;
213 }
214 return(earr);
215 }
216
217
218 /* Perform super-sampling on hemisphere (introduces bias) */
219 static void
220 ambsupersamp(AMBHEMI *hp, int cnt)
221 {
222 float *earr = getambdiffs(hp);
223 double e2rem = 0;
224 float *ep;
225 int i, j, n, nss;
226
227 if (earr == NULL) /* just skip calc. if no memory */
228 return;
229 /* accumulate estimated variances */
230 for (ep = earr + hp->ns*hp->ns; ep > earr; )
231 e2rem += *--ep;
232 ep = earr; /* perform super-sampling */
233 for (i = 0; i < hp->ns; i++)
234 for (j = 0; j < hp->ns; j++) {
235 if (e2rem <= FTINY)
236 goto done; /* nothing left to do */
237 nss = *ep/e2rem*cnt + frandom();
238 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
239 if (!--cnt) goto done;
240 e2rem -= *ep++; /* update remainder */
241 }
242 done:
243 free(earr);
244 }
245
246
247 static AMBHEMI *
248 samp_hemi( /* sample indirect hemisphere */
249 COLOR rcol,
250 RAY *r,
251 double wt
252 )
253 {
254 AMBHEMI *hp;
255 double d;
256 int n, i, j;
257 /* insignificance check */
258 if (bright(rcol) <= FTINY)
259 return(NULL);
260 /* set number of divisions */
261 if (ambacc <= FTINY &&
262 wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight)))
263 wt = d; /* avoid ray termination */
264 n = sqrt(ambdiv * wt) + 0.5;
265 i = 1 + (MINADIV-1)*(ambacc > FTINY);
266 if (n < i) /* use minimum number of samples? */
267 n = i;
268 /* allocate sampling array */
269 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
270 if (hp == NULL)
271 error(SYSTEM, "out of memory in samp_hemi");
272 hp->rp = r;
273 hp->ns = n;
274 hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0;
275 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
276 hp->sampOK = 0;
277 /* assign coefficient */
278 copycolor(hp->acoef, rcol);
279 d = 1.0/(n*n);
280 scalecolor(hp->acoef, d);
281 /* make tangent plane axes */
282 if (!getperpendicular(hp->ux, r->ron, 1))
283 error(CONSISTENCY, "bad ray direction in samp_hemi");
284 VCROSS(hp->uy, r->ron, hp->ux);
285 /* sample divisions */
286 for (i = hp->ns; i--; )
287 for (j = hp->ns; j--; )
288 hp->sampOK += ambsample(hp, i, j, 0);
289 copycolor(rcol, hp->acol);
290 if (!hp->sampOK) { /* utter failure? */
291 free(hp);
292 return(NULL);
293 }
294 if (hp->sampOK < hp->ns*hp->ns) {
295 hp->sampOK *= -1; /* soft failure */
296 return(hp);
297 }
298 if (hp->sampOK <= MINADIV*MINADIV)
299 return(hp); /* don't bother super-sampling */
300 n = ambssamp*wt + 0.5;
301 if (n > 8) { /* perform super-sampling? */
302 ambsupersamp(hp, n);
303 copycolor(rcol, hp->acol);
304 }
305 return(hp); /* all is well */
306 }
307
308
309 /* Return brightness of farthest ambient sample */
310 static double
311 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
312 {
313 if (hp->sa[n1].d <= hp->sa[n2].d) {
314 if (hp->sa[n1].d <= hp->sa[n3].d)
315 return(colval(hp->sa[n1].v,CIEY));
316 return(colval(hp->sa[n3].v,CIEY));
317 }
318 if (hp->sa[n2].d <= hp->sa[n3].d)
319 return(colval(hp->sa[n2].v,CIEY));
320 return(colval(hp->sa[n3].v,CIEY));
321 }
322
323
324 /* Compute vectors and coefficients for Hessian/gradient calcs */
325 static void
326 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
327 {
328 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
329 int ii;
330
331 VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
332 VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
333 VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
334 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
335 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
336 dot_e = DOT(ftp->e_i,ftp->e_i);
337 dot_er = DOT(ftp->e_i, ftp->r_i);
338 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
339 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
340 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
341 sqrt( rdot_cp );
342 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
343 dot_e*ftp->I1 )*0.5*rdot_cp;
344 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
345 for (ii = 3; ii--; )
346 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
347 }
348
349
350 /* Compose 3x3 matrix from two vectors */
351 static void
352 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
353 {
354 mat[0][0] = 2.0*va[0]*vb[0];
355 mat[1][1] = 2.0*va[1]*vb[1];
356 mat[2][2] = 2.0*va[2]*vb[2];
357 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
358 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
359 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
360 }
361
362
363 /* Compute partial 3x3 Hessian matrix for edge */
364 static void
365 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
366 {
367 FVECT ncp;
368 FVECT m1[3], m2[3], m3[3], m4[3];
369 double d1, d2, d3, d4;
370 double I3, J3, K3;
371 int i, j;
372 /* compute intermediate coefficients */
373 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
374 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
375 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
376 d4 = DOT(ftp->e_i, ftp->r_i);
377 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
378 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
379 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
380 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
381 /* intermediate matrices */
382 VCROSS(ncp, nrm, ftp->e_i);
383 compose_matrix(m1, ncp, ftp->rI2_eJ2);
384 compose_matrix(m2, ftp->r_i, ftp->r_i);
385 compose_matrix(m3, ftp->e_i, ftp->e_i);
386 compose_matrix(m4, ftp->r_i, ftp->e_i);
387 d1 = DOT(nrm, ftp->rcp);
388 d2 = -d1*ftp->I2;
389 d1 *= 2.0;
390 for (i = 3; i--; ) /* final matrix sum */
391 for (j = 3; j--; ) {
392 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
393 2.0*J3*m4[i][j] );
394 hess[i][j] += d2*(i==j);
395 hess[i][j] *= -1.0/PI;
396 }
397 }
398
399
400 /* Reverse hessian calculation result for edge in other direction */
401 static void
402 rev_hessian(FVECT hess[3])
403 {
404 int i;
405
406 for (i = 3; i--; ) {
407 hess[i][0] = -hess[i][0];
408 hess[i][1] = -hess[i][1];
409 hess[i][2] = -hess[i][2];
410 }
411 }
412
413
414 /* Add to radiometric Hessian from the given triangle */
415 static void
416 add2hessian(FVECT hess[3], FVECT ehess1[3],
417 FVECT ehess2[3], FVECT ehess3[3], double v)
418 {
419 int i, j;
420
421 for (i = 3; i--; )
422 for (j = 3; j--; )
423 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
424 }
425
426
427 /* Compute partial displacement form factor gradient for edge */
428 static void
429 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
430 {
431 FVECT ncp;
432 double f1;
433 int i;
434
435 f1 = 2.0*DOT(nrm, ftp->rcp);
436 VCROSS(ncp, nrm, ftp->e_i);
437 for (i = 3; i--; )
438 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
439 }
440
441
442 /* Reverse gradient calculation result for edge in other direction */
443 static void
444 rev_gradient(FVECT grad)
445 {
446 grad[0] = -grad[0];
447 grad[1] = -grad[1];
448 grad[2] = -grad[2];
449 }
450
451
452 /* Add to displacement gradient from the given triangle */
453 static void
454 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
455 {
456 int i;
457
458 for (i = 3; i--; )
459 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
460 }
461
462
463 /* Compute anisotropic radii and eigenvector directions */
464 static void
465 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
466 {
467 double hess2[2][2];
468 FVECT a, b;
469 double evalue[2], slope1, xmag1;
470 int i;
471 /* project Hessian to sample plane */
472 for (i = 3; i--; ) {
473 a[i] = DOT(hessian[i], uv[0]);
474 b[i] = DOT(hessian[i], uv[1]);
475 }
476 hess2[0][0] = DOT(uv[0], a);
477 hess2[0][1] = DOT(uv[0], b);
478 hess2[1][0] = DOT(uv[1], a);
479 hess2[1][1] = DOT(uv[1], b);
480 /* compute eigenvalue(s) */
481 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
482 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
483 if (i == 1) /* double-root (circle) */
484 evalue[1] = evalue[0];
485 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
486 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
487 ra[0] = ra[1] = maxarad;
488 return;
489 }
490 if (evalue[0] > evalue[1]) {
491 ra[0] = sqrt(sqrt(4.0/evalue[0]));
492 ra[1] = sqrt(sqrt(4.0/evalue[1]));
493 slope1 = evalue[1];
494 } else {
495 ra[0] = sqrt(sqrt(4.0/evalue[1]));
496 ra[1] = sqrt(sqrt(4.0/evalue[0]));
497 slope1 = evalue[0];
498 }
499 /* compute unit eigenvectors */
500 if (fabs(hess2[0][1]) <= FTINY)
501 return; /* uv OK as is */
502 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
503 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
504 for (i = 3; i--; ) {
505 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
506 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
507 }
508 VCOPY(uv[0], a);
509 VCOPY(uv[1], b);
510 }
511
512
513 static void
514 ambHessian( /* anisotropic radii & pos. gradient */
515 AMBHEMI *hp,
516 FVECT uv[2], /* returned */
517 float ra[2], /* returned (optional) */
518 float pg[2] /* returned (optional) */
519 )
520 {
521 static char memerrmsg[] = "out of memory in ambHessian()";
522 FVECT (*hessrow)[3] = NULL;
523 FVECT *gradrow = NULL;
524 FVECT hessian[3];
525 FVECT gradient;
526 FFTRI fftr;
527 int i, j;
528 /* be sure to assign unit vectors */
529 VCOPY(uv[0], hp->ux);
530 VCOPY(uv[1], hp->uy);
531 /* clock-wise vertex traversal from sample POV */
532 if (ra != NULL) { /* initialize Hessian row buffer */
533 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
534 if (hessrow == NULL)
535 error(SYSTEM, memerrmsg);
536 memset(hessian, 0, sizeof(hessian));
537 } else if (pg == NULL) /* bogus call? */
538 return;
539 if (pg != NULL) { /* initialize form factor row buffer */
540 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
541 if (gradrow == NULL)
542 error(SYSTEM, memerrmsg);
543 memset(gradient, 0, sizeof(gradient));
544 }
545 /* compute first row of edges */
546 for (j = 0; j < hp->ns-1; j++) {
547 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
548 if (hessrow != NULL)
549 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
550 if (gradrow != NULL)
551 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
552 }
553 /* sum each row of triangles */
554 for (i = 0; i < hp->ns-1; i++) {
555 FVECT hesscol[3]; /* compute first vertical edge */
556 FVECT gradcol;
557 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
558 if (hessrow != NULL)
559 comp_hessian(hesscol, &fftr, hp->rp->ron);
560 if (gradrow != NULL)
561 comp_gradient(gradcol, &fftr, hp->rp->ron);
562 for (j = 0; j < hp->ns-1; j++) {
563 FVECT hessdia[3]; /* compute triangle contributions */
564 FVECT graddia;
565 double backg;
566 backg = back_ambval(hp, AI(hp,i,j),
567 AI(hp,i,j+1), AI(hp,i+1,j));
568 /* diagonal (inner) edge */
569 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
570 if (hessrow != NULL) {
571 comp_hessian(hessdia, &fftr, hp->rp->ron);
572 rev_hessian(hesscol);
573 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
574 }
575 if (gradrow != NULL) {
576 comp_gradient(graddia, &fftr, hp->rp->ron);
577 rev_gradient(gradcol);
578 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
579 }
580 /* initialize edge in next row */
581 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
582 if (hessrow != NULL)
583 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
584 if (gradrow != NULL)
585 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
586 /* new column edge & paired triangle */
587 backg = back_ambval(hp, AI(hp,i+1,j+1),
588 AI(hp,i+1,j), AI(hp,i,j+1));
589 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
590 if (hessrow != NULL) {
591 comp_hessian(hesscol, &fftr, hp->rp->ron);
592 rev_hessian(hessdia);
593 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
594 if (i < hp->ns-2)
595 rev_hessian(hessrow[j]);
596 }
597 if (gradrow != NULL) {
598 comp_gradient(gradcol, &fftr, hp->rp->ron);
599 rev_gradient(graddia);
600 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
601 if (i < hp->ns-2)
602 rev_gradient(gradrow[j]);
603 }
604 }
605 }
606 /* release row buffers */
607 if (hessrow != NULL) free(hessrow);
608 if (gradrow != NULL) free(gradrow);
609
610 if (ra != NULL) /* extract eigenvectors & radii */
611 eigenvectors(uv, ra, hessian);
612 if (pg != NULL) { /* tangential position gradient */
613 pg[0] = DOT(gradient, uv[0]);
614 pg[1] = DOT(gradient, uv[1]);
615 }
616 }
617
618
619 /* Compute direction gradient from a hemispherical sampling */
620 static void
621 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
622 {
623 AMBSAMP *ap;
624 double dgsum[2];
625 int n;
626 FVECT vd;
627 double gfact;
628
629 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
630 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
631 /* use vector for azimuth + 90deg */
632 VSUB(vd, ap->p, hp->rp->rop);
633 /* brightness over cosine factor */
634 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
635 /* sine = proj_radius/vd_length */
636 dgsum[0] -= DOT(uv[1], vd) * gfact;
637 dgsum[1] += DOT(uv[0], vd) * gfact;
638 }
639 dg[0] = dgsum[0] / (hp->ns*hp->ns);
640 dg[1] = dgsum[1] / (hp->ns*hp->ns);
641 }
642
643
644 /* Compute potential light leak direction flags for cache value */
645 static uint32
646 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
647 {
648 const double max_d = 1.0/(minarad*ambacc + 0.001);
649 const double ang_res = 0.5*PI/hp->ns;
650 const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
651 double avg_d = 0;
652 uint32 flgs = 0;
653 FVECT vec;
654 double u, v;
655 double ang, a1;
656 int i, j;
657 /* don't bother for a few samples */
658 if (hp->ns < 8)
659 return(0);
660 /* check distances overhead */
661 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
662 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
663 avg_d += ambsam(hp,i,j).d;
664 avg_d *= 4.0/(hp->ns*hp->ns);
665 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
666 return(0);
667 if (avg_d >= max_d) /* insurance */
668 return(0);
669 /* else circle around perimeter */
670 for (i = 0; i < hp->ns; i++)
671 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
672 AMBSAMP *ap = &ambsam(hp,i,j);
673 if ((ap->d <= FTINY) | (ap->d >= max_d))
674 continue; /* too far or too near */
675 VSUB(vec, ap->p, hp->rp->rop);
676 u = DOT(vec, uv[0]);
677 v = DOT(vec, uv[1]);
678 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
679 continue; /* occluder outside ellipse */
680 ang = atan2a(v, u); /* else set direction flags */
681 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
682 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
683 }
684 return(flgs);
685 }
686
687
688 int
689 doambient( /* compute ambient component */
690 COLOR rcol, /* input/output color */
691 RAY *r,
692 double wt,
693 FVECT uv[2], /* returned (optional) */
694 float ra[2], /* returned (optional) */
695 float pg[2], /* returned (optional) */
696 float dg[2], /* returned (optional) */
697 uint32 *crlp /* returned (optional) */
698 )
699 {
700 AMBHEMI *hp = samp_hemi(rcol, r, wt);
701 FVECT my_uv[2];
702 double d, K;
703 AMBSAMP *ap;
704 int i;
705 /* clear return values */
706 if (uv != NULL)
707 memset(uv, 0, sizeof(FVECT)*2);
708 if (ra != NULL)
709 ra[0] = ra[1] = 0.0;
710 if (pg != NULL)
711 pg[0] = pg[1] = 0.0;
712 if (dg != NULL)
713 dg[0] = dg[1] = 0.0;
714 if (crlp != NULL)
715 *crlp = 0;
716 if (hp == NULL) /* sampling falure? */
717 return(0);
718
719 if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
720 (hp->sampOK < 0) | (hp->ns < MINADIV)) {
721 free(hp); /* Hessian not requested/possible */
722 return(-1); /* value-only return value */
723 }
724 if ((d = bright(rcol)) > FTINY) { /* normalize Y values */
725 d = 0.99*(hp->ns*hp->ns)/d;
726 K = 0.01;
727 } else { /* or fall back on geometric Hessian */
728 K = 1.0;
729 pg = NULL;
730 dg = NULL;
731 crlp = NULL;
732 }
733 ap = hp->sa; /* relative Y channel from here on... */
734 for (i = hp->ns*hp->ns; i--; ap++)
735 colval(ap->v,CIEY) = bright(ap->v)*d + K;
736
737 if (uv == NULL) /* make sure we have axis pointers */
738 uv = my_uv;
739 /* compute radii & pos. gradient */
740 ambHessian(hp, uv, ra, pg);
741
742 if (dg != NULL) /* compute direction gradient */
743 ambdirgrad(hp, uv, dg);
744
745 if (ra != NULL) { /* scale/clamp radii */
746 if (pg != NULL) {
747 if (ra[0]*(d = fabs(pg[0])) > 1.0)
748 ra[0] = 1.0/d;
749 if (ra[1]*(d = fabs(pg[1])) > 1.0)
750 ra[1] = 1.0/d;
751 if (ra[0] > ra[1])
752 ra[0] = ra[1];
753 }
754 if (ra[0] < minarad) {
755 ra[0] = minarad;
756 if (ra[1] < minarad)
757 ra[1] = minarad;
758 }
759 ra[0] *= d = 1.0/sqrt(wt);
760 if ((ra[1] *= d) > 2.0*ra[0])
761 ra[1] = 2.0*ra[0];
762 if (ra[1] > maxarad) {
763 ra[1] = maxarad;
764 if (ra[0] > maxarad)
765 ra[0] = maxarad;
766 }
767 /* flag encroached directions */
768 if (crlp != NULL) /* XXX doesn't update with changes to ambacc */
769 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
770 if (pg != NULL) { /* cap gradient if necessary */
771 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
772 if (d > 1.0) {
773 d = 1.0/sqrt(d);
774 pg[0] *= d;
775 pg[1] *= d;
776 }
777 }
778 }
779 free(hp); /* clean up and return */
780 return(1);
781 }