ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.85
Committed: Tue May 14 17:39:10 2019 UTC (4 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R3
Changes since 2.84: +1 -427 lines
Log Message:
Stripped out code related to old (pre-Hessian) ambient calculation

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.84 2019/02/26 00:37:54 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
25
26 typedef struct {
27 COLOR v; /* hemisphere sample value */
28 float d; /* reciprocal distance */
29 FVECT p; /* intersection point */
30 } AMBSAMP; /* sample value */
31
32 typedef struct {
33 RAY *rp; /* originating ray sample */
34 int ns; /* number of samples per axis */
35 int sampOK; /* acquired full sample set? */
36 COLOR acoef; /* division contribution coefficient */
37 double acol[3]; /* accumulated color */
38 FVECT ux, uy; /* tangent axis unit vectors */
39 AMBSAMP sa[1]; /* sample array (extends struct) */
40 } AMBHEMI; /* ambient sample hemisphere */
41
42 #define AI(h,i,j) ((i)*(h)->ns + (j))
43 #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
44
45 typedef struct {
46 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
47 double I1, I2;
48 } FFTRI; /* vectors and coefficients for Hessian calculation */
49
50
51 static int
52 ambcollision( /* proposed direciton collides? */
53 AMBHEMI *hp,
54 int i,
55 int j,
56 FVECT dv
57 )
58 {
59 double cos_thresh;
60 int ii, jj;
61 /* min. spacing = 1/4th division */
62 cos_thresh = (PI/4.)/(double)hp->ns;
63 cos_thresh = 1. - .5*cos_thresh*cos_thresh;
64 /* check existing neighbors */
65 for (ii = i-1; ii <= i+1; ii++) {
66 if (ii < 0) continue;
67 if (ii >= hp->ns) break;
68 for (jj = j-1; jj <= j+1; jj++) {
69 AMBSAMP *ap;
70 FVECT avec;
71 double dprod;
72 if (jj < 0) continue;
73 if (jj >= hp->ns) break;
74 if ((ii==i) & (jj==j)) continue;
75 ap = &ambsam(hp,ii,jj);
76 if (ap->d <= .5/FHUGE)
77 continue; /* no one home */
78 VSUB(avec, ap->p, hp->rp->rop);
79 dprod = DOT(avec, dv);
80 if (dprod >= cos_thresh*VLEN(avec))
81 return(1); /* collision */
82 }
83 }
84 return(0); /* nothing to worry about */
85 }
86
87
88 static int
89 ambsample( /* initial ambient division sample */
90 AMBHEMI *hp,
91 int i,
92 int j,
93 int n
94 )
95 {
96 AMBSAMP *ap = &ambsam(hp,i,j);
97 RAY ar;
98 int hlist[3], ii;
99 double spt[2], zd;
100 /* generate hemispherical sample */
101 /* ambient coefficient for weight */
102 if (ambacc > FTINY)
103 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
104 else
105 copycolor(ar.rcoef, hp->acoef);
106 if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
107 return(0);
108 if (ambacc > FTINY) {
109 multcolor(ar.rcoef, hp->acoef);
110 scalecolor(ar.rcoef, 1./AVGREFL);
111 }
112 hlist[0] = hp->rp->rno;
113 hlist[1] = j;
114 hlist[2] = i;
115 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
116 resample:
117 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
118 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
119 for (ii = 3; ii--; )
120 ar.rdir[ii] = spt[0]*hp->ux[ii] +
121 spt[1]*hp->uy[ii] +
122 zd*hp->rp->ron[ii];
123 checknorm(ar.rdir);
124 /* avoid coincident samples */
125 if (!n && ambcollision(hp, i, j, ar.rdir)) {
126 spt[0] = frandom(); spt[1] = frandom();
127 goto resample; /* reject this sample */
128 }
129 dimlist[ndims++] = AI(hp,i,j) + 90171;
130 rayvalue(&ar); /* evaluate ray */
131 ndims--;
132 zd = raydistance(&ar);
133 if (zd <= FTINY)
134 return(0); /* should never happen */
135 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
136 if (zd*ap->d < 1.0) /* new/closer distance? */
137 ap->d = 1.0/zd;
138 if (!n) { /* record first vertex & value */
139 if (zd > 10.0*thescene.cusize + 1000.)
140 zd = 10.0*thescene.cusize + 1000.;
141 VSUM(ap->p, ar.rorg, ar.rdir, zd);
142 copycolor(ap->v, ar.rcol);
143 } else { /* else update recorded value */
144 hp->acol[RED] -= colval(ap->v,RED);
145 hp->acol[GRN] -= colval(ap->v,GRN);
146 hp->acol[BLU] -= colval(ap->v,BLU);
147 zd = 1.0/(double)(n+1);
148 scalecolor(ar.rcol, zd);
149 zd *= (double)n;
150 scalecolor(ap->v, zd);
151 addcolor(ap->v, ar.rcol);
152 }
153 addcolor(hp->acol, ap->v); /* add to our sum */
154 return(1);
155 }
156
157
158 /* Estimate variance based on ambient division differences */
159 static float *
160 getambdiffs(AMBHEMI *hp)
161 {
162 const double normf = 1./bright(hp->acoef);
163 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
164 float *ep;
165 AMBSAMP *ap;
166 double b, b1, d2;
167 int i, j;
168
169 if (earr == NULL) /* out of memory? */
170 return(NULL);
171 /* sum squared neighbor diffs */
172 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
173 for (j = 0; j < hp->ns; j++, ap++, ep++) {
174 b = bright(ap[0].v);
175 if (i) { /* from above */
176 b1 = bright(ap[-hp->ns].v);
177 d2 = b - b1;
178 d2 *= d2*normf/(b + b1);
179 ep[0] += d2;
180 ep[-hp->ns] += d2;
181 }
182 if (!j) continue;
183 /* from behind */
184 b1 = bright(ap[-1].v);
185 d2 = b - b1;
186 d2 *= d2*normf/(b + b1);
187 ep[0] += d2;
188 ep[-1] += d2;
189 if (!i) continue;
190 /* diagonal */
191 b1 = bright(ap[-hp->ns-1].v);
192 d2 = b - b1;
193 d2 *= d2*normf/(b + b1);
194 ep[0] += d2;
195 ep[-hp->ns-1] += d2;
196 }
197 /* correct for number of neighbors */
198 earr[0] *= 8./3.;
199 earr[hp->ns-1] *= 8./3.;
200 earr[(hp->ns-1)*hp->ns] *= 8./3.;
201 earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.;
202 for (i = 1; i < hp->ns-1; i++) {
203 earr[i*hp->ns] *= 8./5.;
204 earr[i*hp->ns + hp->ns-1] *= 8./5.;
205 }
206 for (j = 1; j < hp->ns-1; j++) {
207 earr[j] *= 8./5.;
208 earr[(hp->ns-1)*hp->ns + j] *= 8./5.;
209 }
210 return(earr);
211 }
212
213
214 /* Perform super-sampling on hemisphere (introduces bias) */
215 static void
216 ambsupersamp(AMBHEMI *hp, int cnt)
217 {
218 float *earr = getambdiffs(hp);
219 double e2rem = 0;
220 float *ep;
221 int i, j, n, nss;
222
223 if (earr == NULL) /* just skip calc. if no memory */
224 return;
225 /* accumulate estimated variances */
226 for (ep = earr + hp->ns*hp->ns; ep > earr; )
227 e2rem += *--ep;
228 ep = earr; /* perform super-sampling */
229 for (i = 0; i < hp->ns; i++)
230 for (j = 0; j < hp->ns; j++) {
231 if (e2rem <= FTINY)
232 goto done; /* nothing left to do */
233 nss = *ep/e2rem*cnt + frandom();
234 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
235 if (!--cnt) goto done;
236 e2rem -= *ep++; /* update remainder */
237 }
238 done:
239 free(earr);
240 }
241
242
243 static AMBHEMI *
244 samp_hemi( /* sample indirect hemisphere */
245 COLOR rcol,
246 RAY *r,
247 double wt
248 )
249 {
250 AMBHEMI *hp;
251 double d;
252 int n, i, j;
253 /* insignificance check */
254 if (bright(rcol) <= FTINY)
255 return(NULL);
256 /* set number of divisions */
257 if (ambacc <= FTINY &&
258 wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight)))
259 wt = d; /* avoid ray termination */
260 n = sqrt(ambdiv * wt) + 0.5;
261 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
262 if (n < i)
263 n = i;
264 /* allocate sampling array */
265 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
266 if (hp == NULL)
267 error(SYSTEM, "out of memory in samp_hemi");
268 hp->rp = r;
269 hp->ns = n;
270 hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0;
271 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
272 hp->sampOK = 0;
273 /* assign coefficient */
274 copycolor(hp->acoef, rcol);
275 d = 1.0/(n*n);
276 scalecolor(hp->acoef, d);
277 /* make tangent plane axes */
278 if (!getperpendicular(hp->ux, r->ron, 1))
279 error(CONSISTENCY, "bad ray direction in samp_hemi");
280 VCROSS(hp->uy, r->ron, hp->ux);
281 /* sample divisions */
282 for (i = hp->ns; i--; )
283 for (j = hp->ns; j--; )
284 hp->sampOK += ambsample(hp, i, j, 0);
285 copycolor(rcol, hp->acol);
286 if (!hp->sampOK) { /* utter failure? */
287 free(hp);
288 return(NULL);
289 }
290 if (hp->sampOK < hp->ns*hp->ns) {
291 hp->sampOK *= -1; /* soft failure */
292 return(hp);
293 }
294 if (hp->sampOK < 64)
295 return(hp); /* insufficient for super-sampling */
296 n = ambssamp*wt + 0.5;
297 if (n > 8) { /* perform super-sampling? */
298 ambsupersamp(hp, n);
299 copycolor(rcol, hp->acol);
300 }
301 return(hp); /* all is well */
302 }
303
304
305 /* Return brightness of farthest ambient sample */
306 static double
307 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
308 {
309 if (hp->sa[n1].d <= hp->sa[n2].d) {
310 if (hp->sa[n1].d <= hp->sa[n3].d)
311 return(colval(hp->sa[n1].v,CIEY));
312 return(colval(hp->sa[n3].v,CIEY));
313 }
314 if (hp->sa[n2].d <= hp->sa[n3].d)
315 return(colval(hp->sa[n2].v,CIEY));
316 return(colval(hp->sa[n3].v,CIEY));
317 }
318
319
320 /* Compute vectors and coefficients for Hessian/gradient calcs */
321 static void
322 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
323 {
324 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
325 int ii;
326
327 VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
328 VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
329 VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
330 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
331 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
332 dot_e = DOT(ftp->e_i,ftp->e_i);
333 dot_er = DOT(ftp->e_i, ftp->r_i);
334 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
335 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
336 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
337 sqrt( rdot_cp );
338 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
339 dot_e*ftp->I1 )*0.5*rdot_cp;
340 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
341 for (ii = 3; ii--; )
342 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
343 }
344
345
346 /* Compose 3x3 matrix from two vectors */
347 static void
348 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
349 {
350 mat[0][0] = 2.0*va[0]*vb[0];
351 mat[1][1] = 2.0*va[1]*vb[1];
352 mat[2][2] = 2.0*va[2]*vb[2];
353 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
354 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
355 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
356 }
357
358
359 /* Compute partial 3x3 Hessian matrix for edge */
360 static void
361 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
362 {
363 FVECT ncp;
364 FVECT m1[3], m2[3], m3[3], m4[3];
365 double d1, d2, d3, d4;
366 double I3, J3, K3;
367 int i, j;
368 /* compute intermediate coefficients */
369 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
370 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
371 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
372 d4 = DOT(ftp->e_i, ftp->r_i);
373 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
374 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
375 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
376 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
377 /* intermediate matrices */
378 VCROSS(ncp, nrm, ftp->e_i);
379 compose_matrix(m1, ncp, ftp->rI2_eJ2);
380 compose_matrix(m2, ftp->r_i, ftp->r_i);
381 compose_matrix(m3, ftp->e_i, ftp->e_i);
382 compose_matrix(m4, ftp->r_i, ftp->e_i);
383 d1 = DOT(nrm, ftp->rcp);
384 d2 = -d1*ftp->I2;
385 d1 *= 2.0;
386 for (i = 3; i--; ) /* final matrix sum */
387 for (j = 3; j--; ) {
388 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
389 2.0*J3*m4[i][j] );
390 hess[i][j] += d2*(i==j);
391 hess[i][j] *= -1.0/PI;
392 }
393 }
394
395
396 /* Reverse hessian calculation result for edge in other direction */
397 static void
398 rev_hessian(FVECT hess[3])
399 {
400 int i;
401
402 for (i = 3; i--; ) {
403 hess[i][0] = -hess[i][0];
404 hess[i][1] = -hess[i][1];
405 hess[i][2] = -hess[i][2];
406 }
407 }
408
409
410 /* Add to radiometric Hessian from the given triangle */
411 static void
412 add2hessian(FVECT hess[3], FVECT ehess1[3],
413 FVECT ehess2[3], FVECT ehess3[3], double v)
414 {
415 int i, j;
416
417 for (i = 3; i--; )
418 for (j = 3; j--; )
419 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
420 }
421
422
423 /* Compute partial displacement form factor gradient for edge */
424 static void
425 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
426 {
427 FVECT ncp;
428 double f1;
429 int i;
430
431 f1 = 2.0*DOT(nrm, ftp->rcp);
432 VCROSS(ncp, nrm, ftp->e_i);
433 for (i = 3; i--; )
434 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
435 }
436
437
438 /* Reverse gradient calculation result for edge in other direction */
439 static void
440 rev_gradient(FVECT grad)
441 {
442 grad[0] = -grad[0];
443 grad[1] = -grad[1];
444 grad[2] = -grad[2];
445 }
446
447
448 /* Add to displacement gradient from the given triangle */
449 static void
450 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
451 {
452 int i;
453
454 for (i = 3; i--; )
455 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
456 }
457
458
459 /* Compute anisotropic radii and eigenvector directions */
460 static void
461 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
462 {
463 double hess2[2][2];
464 FVECT a, b;
465 double evalue[2], slope1, xmag1;
466 int i;
467 /* project Hessian to sample plane */
468 for (i = 3; i--; ) {
469 a[i] = DOT(hessian[i], uv[0]);
470 b[i] = DOT(hessian[i], uv[1]);
471 }
472 hess2[0][0] = DOT(uv[0], a);
473 hess2[0][1] = DOT(uv[0], b);
474 hess2[1][0] = DOT(uv[1], a);
475 hess2[1][1] = DOT(uv[1], b);
476 /* compute eigenvalue(s) */
477 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
478 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
479 if (i == 1) /* double-root (circle) */
480 evalue[1] = evalue[0];
481 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
482 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
483 ra[0] = ra[1] = maxarad;
484 return;
485 }
486 if (evalue[0] > evalue[1]) {
487 ra[0] = sqrt(sqrt(4.0/evalue[0]));
488 ra[1] = sqrt(sqrt(4.0/evalue[1]));
489 slope1 = evalue[1];
490 } else {
491 ra[0] = sqrt(sqrt(4.0/evalue[1]));
492 ra[1] = sqrt(sqrt(4.0/evalue[0]));
493 slope1 = evalue[0];
494 }
495 /* compute unit eigenvectors */
496 if (fabs(hess2[0][1]) <= FTINY)
497 return; /* uv OK as is */
498 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
499 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
500 for (i = 3; i--; ) {
501 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
502 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
503 }
504 VCOPY(uv[0], a);
505 VCOPY(uv[1], b);
506 }
507
508
509 static void
510 ambHessian( /* anisotropic radii & pos. gradient */
511 AMBHEMI *hp,
512 FVECT uv[2], /* returned */
513 float ra[2], /* returned (optional) */
514 float pg[2] /* returned (optional) */
515 )
516 {
517 static char memerrmsg[] = "out of memory in ambHessian()";
518 FVECT (*hessrow)[3] = NULL;
519 FVECT *gradrow = NULL;
520 FVECT hessian[3];
521 FVECT gradient;
522 FFTRI fftr;
523 int i, j;
524 /* be sure to assign unit vectors */
525 VCOPY(uv[0], hp->ux);
526 VCOPY(uv[1], hp->uy);
527 /* clock-wise vertex traversal from sample POV */
528 if (ra != NULL) { /* initialize Hessian row buffer */
529 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
530 if (hessrow == NULL)
531 error(SYSTEM, memerrmsg);
532 memset(hessian, 0, sizeof(hessian));
533 } else if (pg == NULL) /* bogus call? */
534 return;
535 if (pg != NULL) { /* initialize form factor row buffer */
536 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
537 if (gradrow == NULL)
538 error(SYSTEM, memerrmsg);
539 memset(gradient, 0, sizeof(gradient));
540 }
541 /* compute first row of edges */
542 for (j = 0; j < hp->ns-1; j++) {
543 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
544 if (hessrow != NULL)
545 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
546 if (gradrow != NULL)
547 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
548 }
549 /* sum each row of triangles */
550 for (i = 0; i < hp->ns-1; i++) {
551 FVECT hesscol[3]; /* compute first vertical edge */
552 FVECT gradcol;
553 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
554 if (hessrow != NULL)
555 comp_hessian(hesscol, &fftr, hp->rp->ron);
556 if (gradrow != NULL)
557 comp_gradient(gradcol, &fftr, hp->rp->ron);
558 for (j = 0; j < hp->ns-1; j++) {
559 FVECT hessdia[3]; /* compute triangle contributions */
560 FVECT graddia;
561 double backg;
562 backg = back_ambval(hp, AI(hp,i,j),
563 AI(hp,i,j+1), AI(hp,i+1,j));
564 /* diagonal (inner) edge */
565 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
566 if (hessrow != NULL) {
567 comp_hessian(hessdia, &fftr, hp->rp->ron);
568 rev_hessian(hesscol);
569 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
570 }
571 if (gradrow != NULL) {
572 comp_gradient(graddia, &fftr, hp->rp->ron);
573 rev_gradient(gradcol);
574 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
575 }
576 /* initialize edge in next row */
577 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
578 if (hessrow != NULL)
579 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
580 if (gradrow != NULL)
581 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
582 /* new column edge & paired triangle */
583 backg = back_ambval(hp, AI(hp,i+1,j+1),
584 AI(hp,i+1,j), AI(hp,i,j+1));
585 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
586 if (hessrow != NULL) {
587 comp_hessian(hesscol, &fftr, hp->rp->ron);
588 rev_hessian(hessdia);
589 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
590 if (i < hp->ns-2)
591 rev_hessian(hessrow[j]);
592 }
593 if (gradrow != NULL) {
594 comp_gradient(gradcol, &fftr, hp->rp->ron);
595 rev_gradient(graddia);
596 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
597 if (i < hp->ns-2)
598 rev_gradient(gradrow[j]);
599 }
600 }
601 }
602 /* release row buffers */
603 if (hessrow != NULL) free(hessrow);
604 if (gradrow != NULL) free(gradrow);
605
606 if (ra != NULL) /* extract eigenvectors & radii */
607 eigenvectors(uv, ra, hessian);
608 if (pg != NULL) { /* tangential position gradient */
609 pg[0] = DOT(gradient, uv[0]);
610 pg[1] = DOT(gradient, uv[1]);
611 }
612 }
613
614
615 /* Compute direction gradient from a hemispherical sampling */
616 static void
617 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
618 {
619 AMBSAMP *ap;
620 double dgsum[2];
621 int n;
622 FVECT vd;
623 double gfact;
624
625 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
626 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
627 /* use vector for azimuth + 90deg */
628 VSUB(vd, ap->p, hp->rp->rop);
629 /* brightness over cosine factor */
630 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
631 /* sine = proj_radius/vd_length */
632 dgsum[0] -= DOT(uv[1], vd) * gfact;
633 dgsum[1] += DOT(uv[0], vd) * gfact;
634 }
635 dg[0] = dgsum[0] / (hp->ns*hp->ns);
636 dg[1] = dgsum[1] / (hp->ns*hp->ns);
637 }
638
639
640 /* Compute potential light leak direction flags for cache value */
641 static uint32
642 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
643 {
644 const double max_d = 1.0/(minarad*ambacc + 0.001);
645 const double ang_res = 0.5*PI/hp->ns;
646 const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
647 double avg_d = 0;
648 uint32 flgs = 0;
649 FVECT vec;
650 double u, v;
651 double ang, a1;
652 int i, j;
653 /* don't bother for a few samples */
654 if (hp->ns < 8)
655 return(0);
656 /* check distances overhead */
657 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
658 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
659 avg_d += ambsam(hp,i,j).d;
660 avg_d *= 4.0/(hp->ns*hp->ns);
661 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
662 return(0);
663 if (avg_d >= max_d) /* insurance */
664 return(0);
665 /* else circle around perimeter */
666 for (i = 0; i < hp->ns; i++)
667 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
668 AMBSAMP *ap = &ambsam(hp,i,j);
669 if ((ap->d <= FTINY) | (ap->d >= max_d))
670 continue; /* too far or too near */
671 VSUB(vec, ap->p, hp->rp->rop);
672 u = DOT(vec, uv[0]);
673 v = DOT(vec, uv[1]);
674 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
675 continue; /* occluder outside ellipse */
676 ang = atan2a(v, u); /* else set direction flags */
677 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
678 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
679 }
680 return(flgs);
681 }
682
683
684 int
685 doambient( /* compute ambient component */
686 COLOR rcol, /* input/output color */
687 RAY *r,
688 double wt,
689 FVECT uv[2], /* returned (optional) */
690 float ra[2], /* returned (optional) */
691 float pg[2], /* returned (optional) */
692 float dg[2], /* returned (optional) */
693 uint32 *crlp /* returned (optional) */
694 )
695 {
696 AMBHEMI *hp = samp_hemi(rcol, r, wt);
697 FVECT my_uv[2];
698 double d, K;
699 AMBSAMP *ap;
700 int i;
701 /* clear return values */
702 if (uv != NULL)
703 memset(uv, 0, sizeof(FVECT)*2);
704 if (ra != NULL)
705 ra[0] = ra[1] = 0.0;
706 if (pg != NULL)
707 pg[0] = pg[1] = 0.0;
708 if (dg != NULL)
709 dg[0] = dg[1] = 0.0;
710 if (crlp != NULL)
711 *crlp = 0;
712 if (hp == NULL) /* sampling falure? */
713 return(0);
714
715 if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
716 (hp->sampOK < 0) | (hp->ns < 6)) {
717 free(hp); /* Hessian not requested/possible */
718 return(-1); /* value-only return value */
719 }
720 if ((d = bright(rcol)) > FTINY) { /* normalize Y values */
721 d = 0.99*(hp->ns*hp->ns)/d;
722 K = 0.01;
723 } else { /* or fall back on geometric Hessian */
724 K = 1.0;
725 pg = NULL;
726 dg = NULL;
727 crlp = NULL;
728 }
729 ap = hp->sa; /* relative Y channel from here on... */
730 for (i = hp->ns*hp->ns; i--; ap++)
731 colval(ap->v,CIEY) = bright(ap->v)*d + K;
732
733 if (uv == NULL) /* make sure we have axis pointers */
734 uv = my_uv;
735 /* compute radii & pos. gradient */
736 ambHessian(hp, uv, ra, pg);
737
738 if (dg != NULL) /* compute direction gradient */
739 ambdirgrad(hp, uv, dg);
740
741 if (ra != NULL) { /* scale/clamp radii */
742 if (pg != NULL) {
743 if (ra[0]*(d = fabs(pg[0])) > 1.0)
744 ra[0] = 1.0/d;
745 if (ra[1]*(d = fabs(pg[1])) > 1.0)
746 ra[1] = 1.0/d;
747 if (ra[0] > ra[1])
748 ra[0] = ra[1];
749 }
750 if (ra[0] < minarad) {
751 ra[0] = minarad;
752 if (ra[1] < minarad)
753 ra[1] = minarad;
754 }
755 ra[0] *= d = 1.0/sqrt(wt);
756 if ((ra[1] *= d) > 2.0*ra[0])
757 ra[1] = 2.0*ra[0];
758 if (ra[1] > maxarad) {
759 ra[1] = maxarad;
760 if (ra[0] > maxarad)
761 ra[0] = maxarad;
762 }
763 /* flag encroached directions */
764 if (crlp != NULL)
765 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
766 if (pg != NULL) { /* cap gradient if necessary */
767 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
768 if (d > 1.0) {
769 d = 1.0/sqrt(d);
770 pg[0] *= d;
771 pg[1] *= d;
772 }
773 }
774 }
775 free(hp); /* clean up and return */
776 return(1);
777 }
778